Mathematics 552 Homework due Friday, February 3, 2006

We now know that the complex exponential e^{z} is given by

$$
e^{z}=e^{x+i y}=e^{x}(\cos (y)+i \sin (y))
$$

Now this implies that if θ is real, that

$$
e^{i \theta}=\cos (\theta)+i \sin (\theta)=\operatorname{cis}(\theta)
$$

which justifies the book's notation of $e^{i \theta}$ for $\operatorname{cis}(\theta)$.
Use this to show that
(1) $\left|e^{z}\right|=e^{\operatorname{Re} z}$.
(2) More generally the polar form of e^{z} is

$$
e^{z}=e^{\operatorname{Re} z} e^{i \operatorname{Im} z}=e^{x} e^{i y}
$$

(3) Find all solutions to $e^{z}=1$.
(4) Find all solutions to $e^{z}=2$.
(5) Find all solutions to $e^{z}=-3 i$.
(6) Find all solutions to $e^{z}=1+i$.

We have (or at least will see shortly) that

$$
\begin{equation*}
\cos (z)=\frac{e^{i z}+e^{-i z}}{2}, \quad \sin z=\frac{e^{i z}-e^{-i z}}{2 i} \tag{1}
\end{equation*}
$$

(7) Use (1) to find all solutions to $\cos (z)=2$. Hint: Set $\cos (z)=\frac{e^{i z}+e^{-i z}}{2}=2$. Multiply through by $e^{i z}$. The result is a quadratic equation in $e^{i z}$. Solve for $e^{i z}$ and then solve the results for z.

Quiz on Friday: Know the formulas

$$
e^{-z}=\cos (z)+i \sin (z), \quad \cos (z)=\frac{e^{i z}+e^{-i z}}{2}, \quad \sin z=\frac{e^{i z}-e^{-i z}}{2 i}
$$

