Mathematics 552 Homework due Wednesday, February 1, 2006

(1) Assuming that you can different term by term find the sum of

$$
S=1+2 r+3 r^{2}+4 r^{3}+\cdots=\sum_{n=1}^{\infty} n r^{n-1}
$$

by taking the derivative of the series

$$
1+r+r^{2}+r^{3}+r^{4}+\cdots=\sum_{n=0}^{\infty} r^{n}=\frac{1}{1-r}
$$

(2) We know that

$$
S=1+r+r^{2}+\cdots+r^{n}=\sum_{k=0}^{n} r^{k}=\frac{1}{1-r}-\frac{r^{n+1}}{1-r}
$$

(a) Take the derivative of this to get a formula for the sum

$$
S^{\prime}=1+2 r+3 r^{2}+\cdots+n r^{n-1}=\sum_{k=0}^{n} k r^{k-1}
$$

(b) Take another derivative to get a formula for the sum

$$
S^{\prime \prime}=2 r+2 \cdot 3 r^{2}++3 \cdot 4 r^{2} \cdots+(n-1) n r^{n-2}=\sum_{k=0}^{n}(k-1) k r^{k-2}
$$

(c) Use this formulas, or any other method you like, to show that if $|r|<1$ the sums

$$
\sum_{k=0}^{\infty} k r^{k-1} \quad \text { and } \quad \sum_{k=0}^{\infty}(k-1) k r^{k-2}
$$

both converge.

Quiz on Wednesday: Have the follow series memorized. The binomial expansion:

$$
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k}, \quad \text { where } \quad\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

The series for e^{x}

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

The series for a finite geometric series

$$
a+a r+a r^{2}+\cdots+a r^{n}=\sum_{k=0}^{n} a r^{k}=\frac{a-a r^{n+1}}{1-r} .
$$

The series for $\sin (x)$ and $\cos (x)$.

$$
\begin{aligned}
& \sin (x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!} \\
& \cos (x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}
\end{aligned}
$$

