Mathematics 552 Homework due Wednesday, April 12, 2006.

There will be a quiz on Wednesday. Here is what will be on it (view this in part as practice for the test next Monday). Know the following statements.

(1) Existence of Laurent expansions: If $0 \le r < |z - z_0| < R \le \infty$ and the function f(z) is analytic in the annulus $A = \{z : r < |z - z_0| < R\}$ then f(z) has a convergent *Laurent expansion*

$$f(z) = \sum_{n = -\infty}^{\infty} a_n (z - z_0)^n$$

in A.

- (2) **Definition of singularity:** The function f(z) has a *singularity* at z_0 iff for some R > 0 we have that f(z) is analytic in the punctured disk $A = \{z : 0 < |z z_0| < R\}$. (We will often also that f(z) has an an *isolated singularity* at z_0 .)
- (3) Existence of Laurent expansions about isolated singularities. If f(z) has an isolated singularity at z_0 then for some R > 0 there is a convergent Laurent expansion

$$f(z) = \sum_{n=-\infty}^{\infty} a_n (z - z_0)^n$$

which holds for $0 < |z - z_0| < R$.

(4) Classification of singularities: If f(z) has an isolated singularity at z_0 with Laurent expansion

$$f(z) = \sum_{n = -\infty}^{\infty} a_n (z - z_0)^n$$

then the singularity is

- (a) **removable** iff $a_n = 0$ for all $n \leq -1$. In this case f(z) extends to an analytic function on the disk $\{z : |z z_0| < R\}$ with power series $f(z) = \sum_{n=0}^{\infty} a_n (z z_0)^n$.
- (b) *a pole* iff there is a $k \leq -1$ so that $a_n = 0$ for n < k but $a_k \neq 0$. In this case z_0 is a *pole of order* -k. In the case of k = -1 we also call z_0 a *simple pole*.

Examples: The $f(z) = \frac{1}{z}$ has a simple pole (i.e. A pole of order one) at $z_0 = 0$, the function $f(z) = \frac{1}{z^k}$ has a pole of order k at $z_0 = 0$, and if

 $h(z_0) \neq 0$ then $f(z) = \frac{h(z)}{(z-z_0)^k}$ has a pole of order k at z_0 .

(c) essential singularity iff there are infinitely many $n \leq -1$ with $a_n \neq 0$.

- (5) Characterization of removable singularities: Let f(z) have an isolated singularity at z_0 . Then the following are equivalent.
 - (a) f(z) has a removable singularity at z_0 .
 - (b) f(z) is bounded near z_0 . That is there is an R > 0 and a constant M > 0 such that $|f(z)| \le M$ for $0 < |z z_0| < R$.

- (6) Characterization of poles: Let f(z) have an isolated singularity at z_0 . Then the following are equivalent.
 - (a) f(z) has a pole at z_0 .
 - (b) $\lim_{z \to z_0} |f(z)| = \infty$.
- (7) Structure of poles of order k: Let f(z) have an isolated singularity at z_0 . Then the following are equivalent.
 - (a) z_0 is a pole of f(z) of order k.
 - (b) There is a analytic function h(z) defined in a neighborhood of z_0 with

$$f(z) = \frac{h(z)}{(z - z_0)^k}$$
, and $h(z_0) \neq 0$.

(8) **Definition of residue:** If f(z) has an isolated singularity at z_0 and the Laurent expansion of f(z) about z_0 is

$$f(z) = \sum_{n=-\infty}^{\infty} a_n (z - z_0)^n,$$

then the *residue of* f(z) *at* z_0 is

$$\operatorname{Res}(f, z_0) = a_{-1}.$$

That is the residue of f(z) at z_0 is the coefficient of $(z - z_0)^{-1}$ in the Laurent expansion of f(z) at z_0 .

(9) Integrals in circles about singularities: If f(z) is analytic in $\{z : 0 < |z - z_0| < R\}$ and 0 < r < R, then

$$\int_{|z-z_0|=r} f(z) \, dz = 2\pi i \operatorname{Res}(f, z_0).$$