Mathematics 552 Homework due Monday, April 10, 2006.

Problem 1. Find the radius of convergence of power series expansion of the following points about the indecated points.
(1) $f(z)=\frac{\sin (z)}{z-10}$ about the point $z_{0}=0$.
(2) $f(z)=\frac{e^{z^{3}-4}}{z^{2}-16}$ about the point $z_{0}=3 i$.
(3) $f(z)=\frac{z^{3}-5 z+2}{z^{2}-2 z+2}$ about the point $z_{0}=3+4 i$.

In doing the following problems you can use either of the following equivalent definitions of z_{0} being a zero of $f(z)$ of order k.

Definition 1. If $f(z)$ is analytic in a domain D and $z_{0} \in D$, then z_{0} is a zero of $f(z)$ of order k iff

$$
f\left(z_{0}\right)=0, f^{\prime}\left(z_{0}\right)=0, f^{\prime \prime}\left(z_{0}\right)=0, \ldots, f^{(k-1)}\left(z_{0}\right)=0, f^{(k)}\left(z_{0}\right) \neq 0
$$

(That is $f(z)$ and all its derivatives up to order $k-1$ vanish at z_{0}, but the k-th derivative does not vanish at z_{0}.)

Definition 2. If $f(z)$ is analytic in a domain D and $z_{0} \in D$, then z_{0} is a zero of $f(z)$ of order k there is an analytic function $h(z)$ in D with $h\left(z_{0}\right) \neq 0$ such that

$$
f(z)=\left(z-z_{0}\right)^{k} h(z)
$$

(That is $\left(z-z_{0}\right)^{k}$ can be factored out of $f(z)$, but no higher power of $\left(z-z_{0}\right)$ can be factored out.)

Problem 2. Show that if $f(z)$ has a zero of order $k \geq 1$ at z_{0}, then the derivative $f^{\prime}(z)$ has a zero of order $k-1$ at z_{0}. Hint: Here it is easiest to use Definition 1.

Problem 3. Show that if $f(z)$ has a zero of order $k \geq 1$ at z_{0}, the quotient $g(z)=$ $\frac{f(z)}{f^{\prime}(z)}$ has a zero of order 1 at z_{0}. Hint: This time Definition 2 is probably easier to work with.

Problem 4. If $f(z)$ has a zero of order k at z_{0} and $g(z)$ has zero of order ℓ at z_{0} then find the order of the zero of the product $p(z)=f(z) g(z)$ at z_{0}. Hint: This time Definition 2 is probably the easiest to use.

The following is one of the standard results related to the maximum principle and the order of zeros.

Schwartz's Lemma. Let $D=\{z:|z|<1\}$ be the unit disk, and let $f(z)$ be analytic in D and continuous in $D \cup \partial D$. Assume that $f(0)=0$ and $|f(z)| \leq 1$. Then

$$
|f(z)| \leq|z|
$$

in D. If equality holds for some $z_{1} \neq 0$, then $f(z)=a z$ for some constant a with $|a|=1$.

Problem 5. The following outlines a proof of this result. Assume that $f(z)$ satisfies the hypothesis of Schwartz's Lemma (that is that $f(0)=0$ and $|f(z)| \leq 1$).
(a) Explain why there is an analytic function $h(z)$ such that $f(z)=z h(z)$. Hint: As $f(0)=0$ the function $f(z)$ has a zero of order ≥ 1 at $z_{0}=0$. Now one of the two definitions above allows us to factor out a z from $f(z)$. Which definition is this?
(b) As the function $h(z)$ is analytic the maximum of $|h(z)|$ occurs on ∂D, which in our case is the circle $|z|=1$. (That the maximum of $|h(z)|$ exists is a consequence of the fact that $f(z)$, and therefore $h(z)$, is continuous on the closed bounded set $|z| \leq 1$.) Now justify the following

$$
|h(z)| \leq \max _{|z| \leq 1}|h(z)|=\max _{|z|=1}|h(z)|=\max _{|z|=1} \frac{|f(z)|}{|z|}=\max _{|z|=1} \frac{|f(z)|}{1} \leq 1
$$

(c) Use $|h(z)| \leq 1$ to show $|f(z)| \leq|z|$.
(d) Finally if equality holds for some $z_{1} \in D$ with $z_{1} \neq 0$, that if $\left|f\left(z_{1}\right)\right|=1$, then show $\left|h\left(z_{1}\right)\right|=1$ and therefore $|h(z)|$ has an interior maximum at z_{1}. What does the maximum modulus theorem then say about $h(z)$?

Remark: That assumpition in Schwartz's lemma that $f(z)$ need be continuous on $D \cup \partial D$ can be dropped. The proof only becomes slightly harder.

Extra Credit Problem. What happens in Schwartz's lemma if the hypothesis $f(0)=0$ and $|f(z)| \leq 1$ are replaced by $f(z)$ has a zero of order $k \geq 1$ at $z=0$ and $|f(z)| \leq 1$. Prove your result. Hint: Start with $f(z)=z^{k} h(z)$ and proceed as above.

