Mathematics 552 Homework due Monday, April 10, 2006.

Problem 1. Find the radius of convergence of power series expansion of the following points about the indecated points.

(1)
$$f(z) = \frac{\sin(z)}{z - 10}$$
 about the point $z_0 = 0$.
(2) $f(z) = \frac{e^{z^3 - 4}}{z^2 - 16}$ about the point $z_0 = 3i$.
(3) $f(z) = \frac{z^3 - 5z + 2}{z^2 - 2z + 2}$ about the point $z_0 = 3 + 4i$

In doing the following problems you can use either of the following equivalent definitions of z_0 being a zero of f(z) of order k.

Definition 1. If f(z) is analytic in a domain D and $z_0 \in D$, then z_0 is a *zero of* f(z) of order k iff

$$f(z_0) = 0, \ f'(z_0) = 0, \ f''(z_0) = 0, \dots, f^{(k-1)}(z_0) = 0, \ f^{(k)}(z_0) \neq 0.$$

(That is f(z) and all its derivatives up to order k-1 vanish at z_0 , but the k-th derivative does not vanish at z_0 .)

Definition 2. If f(z) is analytic in a domain D and $z_0 \in D$, then z_0 is a **zero of** f(z) of order k there is an analytic function h(z) in D with $h(z_0) \neq 0$ such that

$$f(z) = (z - z_0)^k h(z).$$

(That is $(z - z_0)^k$ can be factored out of f(z), but no higher power of $(z - z_0)$ can be factored out.)

Problem 2. Show that if f(z) has a zero of order $k \ge 1$ at z_0 , then the derivative f'(z) has a zero of order k - 1 at z_0 . HINT: Here it is easiest to use Definition 1.

Problem 3. Show that if f(z) has a zero of order $k \ge 1$ at z_0 , the quotient $g(z) = \frac{f(z)}{f'(z)}$ has a zero of order 1 at z_0 . HINT: This time Definition 2 is probably easier to work with.

Problem 4. If f(z) has a zero of order k at z_0 and g(z) has zero of order ℓ at z_0 then find the order of the zero of the product p(z) = f(z)g(z) at z_0 . HINT: This time Definition 2 is probably the easiest to use.

The following is one of the standard results related to the maximum principle and the order of zeros.

Schwartz's Lemma. Let $D = \{z : |z| < 1\}$ be the unit disk, and let f(z) be analytic in D and continuous in $D \cup \partial D$. Assume that f(0) = 0 and $|f(z)| \le 1$. Then

 $|f(z)| \le |z|$

in D. If equality holds for some $z_1 \neq 0$, then f(z) = az for some constant a with |a| = 1.

Problem 5. The following outlines a proof of this result. Assume that f(z) satisfies the hypothesis of Schwartz's Lemma (that is that f(0) = 0 and $|f(z)| \le 1$).

- (a) Explain why there is an analytic function h(z) such that f(z) = zh(z). HINT: As f(0) = 0 the function f(z) has a zero of order ≥ 1 at $z_0 = 0$. Now one of the two definitions above allows us to factor out a z from f(z). Which definition is this?
- (b) As the function h(z) is analytic the maximum of |h(z)| occurs on ∂D , which in our case is the circle |z| = 1. (That the maximum of |h(z)| exists is a consequence of the fact that f(z), and therefore h(z), is continuous on the closed bounded set $|z| \leq 1$.) Now justify the following

$$|h(z)| \le \max_{|z|\le 1} |h(z)| = \max_{|z|=1} |h(z)| = \max_{|z|=1} \frac{|f(z)|}{|z|} = \max_{|z|=1} \frac{|f(z)|}{1} \le 1$$

- (c) Use $|h(z)| \le 1$ to show $|f(z)| \le |z|$.
- (d) Finally if equality holds for some $z_1 \in D$ with $z_1 \neq 0$, that if $|f(z_1)| = 1$, then show $|h(z_1)| = 1$ and therefore |h(z)| has an interior maximum at z_1 . What does the maximum modulus theorem then say about h(z)?

Remark: That assumption in Schwartz's lemma that f(z) need be continuous on $D \cup \partial D$ can be dropped. The proof only becomes slightly harder.

Extra Credit Problem. What happens in Schwartz's lemma if the hypothesis f(0) = 0 and $|f(z)| \le 1$ are replaced by f(z) has a zero of order $k \ge 1$ at z = 0 and $|f(z)| \le 1$. Prove your result. HINT: Start with $f(z) = z^k h(z)$ and proceed as above.