Grades on the Second Exam.

Here is the information on the second test. 16 people took the exam. The scores were $99,98,89,88,85,81,76,73,70,69,64,61$, $56,53,52$, and 46 . The average was 72.5 with a standard deviation of 16.02 . The median was 71.5. The break down in the grades is in the table.

Grade	Range	Number	Percent
A	$85-100$	5	31.25%
B	$75-84$	2	12.50%
C	$65-74$	4	25.00%
D	$50-64$	4	25.00%
F	$0-59$	1	6.25%

Mathematics 552 Homework due Friday, March 24, 2006.

Our goal for a while is to use the Cauchy integral formula to deduce as many facts and properties of analytic functions as possable. Let D be a bounded domain with nice boundary and let $f(z)$ be analytic in D and continuous on $D \cap \partial D$. Then the Cauchy integral formula is

$$
\begin{equation*}
f(z)=\frac{1}{2 \pi i} \int_{\partial D} \frac{f(\zeta)}{\zeta-z} d \zeta \tag{1}
\end{equation*}
$$

where z is any point in D. If you want to avoid the use of the Greek letter ζ this can be written as

$$
f(a)=\frac{1}{2 \pi i} \int_{\partial D} \frac{f(z)}{z-a} d z
$$

We also have forumlas for the first two directives of $f(z)$. These are

$$
\begin{align*}
f^{\prime}(z) & =\frac{1}{2 \pi i} \int_{\partial D} \frac{f(\zeta)}{(\zeta-z)^{2}} d \zeta \tag{2}\\
f^{\prime \prime}(z) & =\frac{2}{2 \pi i} \int_{\partial D} \frac{f(\zeta)}{(\zeta-z)^{3}} d \zeta \tag{3}
\end{align*}
$$

for $z \in D$. By now you are wondering if there are formulas for the higher derivatives. There are and we now derive them. Hold ζ fixed, let n be a positive integer, and set

$$
g(z)=\frac{1}{(\zeta-z)^{n}}=(\zeta-z)^{-n}
$$

This is analytic (that is complex differentable) at all points $z \neq \zeta$. Therefore for $z \neq \zeta$ we have

$$
g^{\prime}(z)=-n(\zeta-z)^{-n-1}(-1)=n(\zeta-z)^{-n-1}=\frac{n}{(\zeta-z)^{n+1}}
$$

Therefore, by the definition of derivative we, have for $z \neq \zeta$ that

$$
\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{1}{(\zeta-(z+h))^{n}}-\frac{1}{(\zeta-z)^{n}}\right)=\lim _{h \rightarrow 0} \frac{g(z+h)-g(z)}{h}=g^{\prime}(z)=\frac{n}{(\zeta-z)^{n+1}}
$$

That is

$$
\begin{equation*}
\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{1}{(\zeta-(z+h))^{n}}-\frac{1}{(\zeta-z)^{n}}\right)=\frac{n}{(\zeta-z)^{n+1}} \tag{4}
\end{equation*}
$$

Let $H_{n}(z)$ be the function defined in D by

$$
\begin{equation*}
H_{n}(z)=\int_{\partial D} \frac{f(\zeta)}{(\zeta-z)^{n}} d \zeta \tag{5}
\end{equation*}
$$

Using the limit (4) we have

$$
\begin{aligned}
H_{n}^{\prime}(z) & =\lim _{h \rightarrow 0} \frac{1}{h}\left(H_{n}(z+h)-H_{n}(z)\right) \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\int_{\partial D} \frac{f(\zeta)}{(\zeta-(z+h))^{n}} d \zeta-\int_{\partial D} \frac{f(\zeta)}{(\zeta-z)^{n}} d \zeta\right) \\
& =\lim _{h \rightarrow 0} \int_{\partial D} \frac{1}{h}\left(\frac{1}{(\zeta-(z+h))^{n}}-\frac{1}{(\zeta-z)^{n}}\right) f(\zeta) d \zeta \\
& =\int_{\partial D} \lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{1}{(\zeta-(z+h))^{n}}-\frac{1}{(\zeta-z)^{n}}\right) f(\zeta) d \zeta \\
& =\int_{\partial D} \frac{n}{(\zeta-z)^{n+1}} f(\zeta) d \zeta \quad \quad(\text { Used (4) here) } \\
& =n \int_{\partial D} \frac{f(\zeta)}{(\zeta-z)^{n+1}} d \zeta \\
& =n H_{n+1}(z)
\end{aligned}
$$

This shows that the complex derivitive of $H_{n}(z)$ exist, that is $H_{n}(z)$ is analytic in D, and its derivative is $n H_{n+1}(z)$. We record this:

Lemma 1. The for each positive integer n the function $H_{n}(z)$ defined by (5) is analytic in D and its defintive is

$$
H_{n}^{\prime}(z)=n H_{n+1}(z) .
$$

Problem 1. Expalin why the Cauchy integral formula can be written as

$$
f(z)=\frac{1}{2 \pi i} H_{1}(z)
$$

(This is easy, don't make it hard.)
From Lemma 1 this implies that $f(z)$ has derivative

$$
f^{\prime}(z)=\frac{1}{2 \pi i} H_{1}^{\prime}(z)=\frac{1}{2 \pi i} H_{2}(z) .
$$

Problem 2. Show that $f^{\prime}(z)=\frac{1}{2 \pi i} H_{2}(z)$ is really the same thing as equation (2). (Again this is easy)

From $f^{\prime}(z)=\frac{1}{2 \pi i} H_{2}(z)$ and Lemma 1 we have that f^{\prime} is differentiable, that is analytic, and that for $z \in D$

$$
f^{\prime \prime}(z)=\frac{1}{2 \pi i} H_{2}^{\prime}(z)=\frac{2}{2 \pi i} H_{3}(z) .
$$

Problem 3. Show that $f^{\prime \prime}(z)=\frac{2}{2 \pi i} H_{3}(z)$ is the same as the formula (3) for the second derivative.

We can keep using Lemma 1 in this fashion:

$$
\begin{aligned}
f^{\prime \prime \prime}(z) & =\frac{2}{2 \pi i} H_{3}^{\prime}(z)=\frac{2 \cdot 3}{2 \pi i} H_{4}(z)=\frac{3!}{2 \pi i} H_{4}(z) \\
f^{(4)}(z) & =\frac{2 \cdot 3}{2 \pi i} H_{4}^{\prime}(z)=\frac{2 \cdot 3 \cdot 4}{2 \pi i} H_{5}(z)=\frac{4!}{2 \pi i} H_{5}(z) \\
f^{(5)}(z) & =\frac{2 \cdot 3 \cdot 4}{2 \pi i} H_{5}^{\prime}(z)=\frac{2 \cdot 3 \cdot 4 \cdot 5}{2 \pi i} H_{6}(z)=\frac{5!}{2 \pi i} H_{6}(z) \\
f^{(6)}(z) & =\frac{2 \cdot 3 \cdot 4 \cdot 5}{2 \pi i} H_{6}^{\prime}(z)=\frac{2 \cdot 3 \cdot 4 \cdot 5 \cdot 6}{2 \pi i} H_{7}(z)=\frac{6!}{2 \pi i} H_{7}(z)
\end{aligned}
$$

and so on.
Problem 4. Find the pattern in the above calculations and give a formula for the n-th derivative $f^{(n)}(z)$ of $f(z)$ in D in terms of the functions H_{k}. Prove your result by use of induction.

Problem 5. Use your result for the last problem to give an integral formula for $f^{(n)}(z)$. Hint: This should only involve using the definition of H_{k}. You can check your formula by looking in the text.

