Grades on the Second Exam.

Here is the information on the second test. Grade
16 people took the exam. The scores were A
99, 98, 89, 88, 85, 81, 76, 73, 70, 69, 64, 61,
56, 53, 52, and 46. The average was 72.5
Wlth' a standard deviation of 16.02.' The D 50-64 4 95.00%
median was 71.5. The break down in the
. F 0-59 1 6.25%

grades is in the table.

Mathematics 552 Homework due Friday, March 24, 2006.

Range | Number | Percent
85-100 5 31.25%
B 7584 2 12.50%
C 65-74 4 25.00%

Our goal for a while is to use the Cauchy integral formula to deduce as many facts
and properties of analytic functions as possable. Let D be a bounded domain with
nice boundary and let f(z) be analytic in D and continuous on D N dD. Then the
Cauchy integral formula is
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where z is any point in D. If you want to avoid the use of the Greek letter ¢ this can
be written as
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We also have forumlas for the first two directives of f(z). These are
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for z € D. By now you are wondering if there are formulas for the higher derivatives.
There are and we now derive them. Hold ( fixed, let n be a positive integer, and set
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This is analytic (that is complex differentable) at all points z # (. Therefore for
z # ( we have
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Therefore, by the definition of derivative we, have for z # ( that
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Let H,(z) be the function defined in D by
f(¢)

) H,(z)= dc.
) 0= [ Ea



Using the limit (4) we have
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This shows that the complex derivitive of H,,(z) exist, that is H,(z) is analytic in D,
and its derivative is nH,1(z). We record this:

Lemma 1. The for each positive integer n the function H,(z) defined by (5) is
analytic in D and its defintive is

H.(2) = nHa (2).

O
Problem 1. Expalin why the Cauchy integral formula can be written as
1
f(z) = D 1(2)
(This is easy, don’t make it hard.) O

From Lemma 1 this implies that f(z) has derivative

J(2) = ——H)(2) = ——Hy(2).

2m 2m
Problem 2. Show that f'(z) = 5=H(z) is really the same thing as equation (2).
(Again this is easy) O
From f/(z) = 5= Hy(z) and Lemma 1 we have that f’ is differentiable, that is
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analytic, and that for z € D
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Problem 3. Show that f”(z) = 5= H;s(z) is the same as the formula (3) for the

second derivative. O



We can keep using Lemma 1 in this fashion:
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and so on.

Problem 4. Find the pattern in the above calculations and give a formula for the
n-th derivative f((z) of f(z) in D in terms of the functions Hj. Prove your result
by use of induction. 0

Problem 5. Use your result for the last problem to give an integral formula for
f™(z). HiNT: This should only involve using the definition of Hy. You can check
your formula by looking in the text. O



