Mathematics 552 Homework due Friday, March 17, 2006.

Problem 1. Use the Cauchy integral formula to compute the following integrals.
(a) $\int_{|z|=3} \frac{e^{z}}{z} d z$
(b) $\int_{|z|=3} \frac{e^{z}}{z-1} d z$
(c) $\int_{|z|=2} \frac{z}{z^{2}+4 z+3} d z \quad$ Hint: Factor the denominator.

Here is the statement we have of the Cauchy integral formula.
Cauchy integral formula. Let D be a bounded domain with nice boundary ∂D and let $f(z)$ be analytic in D and continuous on $D \cup \partial D$. Then for $z \in D$

$$
f(z)=\frac{1}{2 \pi i} \int_{\partial D} \frac{f(\zeta) d \zeta}{\zeta-z}
$$

Problem 2. Know the statement and proof of the Cauchy integral formula. (This will be collected in the from of a quiz.)
Problem 3. Let D be a bounded domain with nice boundary ∂D and let $f(z)$ be analytic in D and continuous on $D \cup \partial D$. Show that for $z \in D$ the derivative of $f(z)$ can be represented by the integral formula

$$
f^{\prime}(z)=\int_{\partial D} \frac{f(\zeta) d \zeta}{(\zeta-z)^{2}}
$$

Hint: By the Cauchy integral formula we have that for $z \in D$ and h small enought that $z+h \in D$ then

$$
f(z+h)=\frac{1}{2 \pi i} \int_{\partial D} \frac{f(\zeta) d \zeta}{\zeta-z-h}, \quad f(z)=\frac{1}{2 \pi i} \int_{\partial D} \frac{f(\zeta) d \zeta}{\zeta-z}
$$

Use this to show that

$$
\begin{aligned}
\frac{f(z+h)-f(z)}{h} & =\frac{1}{h}\left(\frac{1}{2 \pi i} \int_{\partial D} \frac{f(\zeta) d \zeta}{\zeta-z-h}-\frac{1}{2 \pi i} \int_{\partial D} \frac{f(\zeta) d \zeta}{\zeta-z}\right) \\
& =\frac{1}{2 \pi i} \int_{\partial D} \frac{1}{h}\left(\frac{1}{\zeta-z-h}-\frac{1}{\zeta-z}\right) f(\zeta) d \zeta \\
& =\frac{1}{2 \pi i} \int_{\partial D} \frac{1}{h} \frac{(\zeta-z)-(\zeta-z-h)}{(\zeta-z-h)(\zeta-z)} f(\zeta) d \zeta \\
& =\frac{1}{2 \pi i} \int_{\partial D} \frac{1}{h} \frac{h}{(\zeta-z-h)(\zeta-z)} f(\zeta) d \zeta \\
& =\frac{1}{2 \pi i} \int_{\partial D} \frac{1}{(\zeta-z-h)(\zeta-z)} f(\zeta) d \zeta
\end{aligned}
$$

Therefore

$$
f^{\prime}(z)=\lim _{h \rightarrow 0} \frac{f(z+h)-f(z)}{h}=\lim _{h \rightarrow 0} \frac{1}{2 \pi i} \int_{\partial D} \frac{1}{(\zeta-z-h)(\zeta-z)} f(\zeta) d \zeta
$$

and this can be evaluated by taking the limit under the integral (i.e. you can get by with just plugging in $h=0$).
Problem 4. Let D be a bounded domain with nice boundary ∂D and let $f(z)$ be analytic in D and continuous on $D \cup \partial D$. Show that for $z \in D$ the second derivative of $f(z)$ exists and can be represented by the integral formula

$$
\begin{equation*}
f^{\prime \prime}(z)=\frac{2}{2 \pi i} \int_{\partial D} \frac{f(\zeta)}{(\zeta-z)^{3}} d \zeta \tag{1}
\end{equation*}
$$

Conclude that $f^{\prime}(z)$ is analytic in D. Hint: This is very much like the last problem. From that problem we have

$$
f^{\prime}(z+h)=\frac{1}{2 \pi i} \int_{\partial D} \frac{f(\zeta) d z}{(\zeta-z-h)^{2}}, \quad f^{\prime}(z)=\frac{1}{2 \pi i} \int_{\partial D} \frac{f(\zeta) d z}{(\zeta-z)^{2}}
$$

Use this and do a calculation like the one above to simplify

$$
\frac{f^{\prime}(z+h)-f^{\prime}(z)}{h}=\frac{1}{h}\left(\frac{1}{2 \pi i} \int_{\partial D} \frac{f(\zeta) d \zeta}{(\zeta-z-h)^{2}}-\frac{1}{2 \pi i} \int_{\partial D} \frac{f(\zeta) d \zeta}{(\zeta-z)^{2}}\right)
$$

to the point that the h in the denominator of $\frac{1}{h}$ cancels out. Then you can compute the limit $\lim _{h \rightarrow 0} \frac{f^{\prime}(z+h)-f^{\prime}(z)}{h}=f^{\prime \prime}(z)$ to see that it exists and is given by the formula (1). Now explain, using English, why the existance of the second derivative implies that $f^{\prime}(z)$ is analytic.

