Mathematics 552 Homework due Monday, March 13, 2006.

Recall that a domain is a connected open set. A domain is simply connected iff it has no holes in it. As examples

Some simply connected domains.
A domain that is not simply connected is called either non-simply connected or multiply connected. Examples:

Some multiply connected domains.
The official definition high brow definition of simply connected is that any closed curve in the domain can be continuously contracted in the domain to a point. For domains in the plane this is equivalent to the "no holes" definition, and the "no holes" version is easier to visualize.

We have proven
Theorem 1 (A form of Cauchy's Theorem). If D is a simply connected domain and $f(z)$ is analytic in D, then for any closed curve C in D

$$
\int_{C} f(z) d z=0
$$

We used this to show that an analytic function on a simply connected domain has an antiderivative. More precisely:

Theorem 2 (Exsitance of antiderivatives). If D is simply and $f(z)$ is analytic in D, then there is an analytic function $F(z)$ on D with $F^{\prime}(z)=f(z)$.

This is false if the domain is not simply connected.
Problem 1. Show that the analytic function $f(z)=1 / z$ does not have an antiderivative on the domain $D:=\{z: 1 / 2<|z|<2\}$. Hint: Suppose that $f(z)$
did have any antiderivative $F(z)$. Then for any curve C in D we have $\int_{C} f(z) d z=$ $F\left(C_{\text {Initial }}\right)-F\left(C_{\text {End }}\right)$. In particular this implies that if C is a closed curve that $\int_{C} f(z) d z=0$. Now get a contradiction by showing that if C is the curve $|z|=1$ transversed counterclockwise that $\int_{C} f(z) d z=\int_{C} \frac{d z}{z} \neq 0$.

The existence of antiderivatives has nice consequences.
Theorem 3 (Existance of Logarithms on Simply Connected Domains). Let D be simply connected and $f(z)$ analytic on D with $f(z) \neq 0$ at any point of D. Then there is an analytic function $h(z)$ in D with $e^{h(z)}=f(z)$. We call $h(z)$ a logarithm of $f(z)$.

Restatement: A non-vanishing analytic function in a simply connected domain has an analytic logarithm. Note that the function $h(z)$ is not unique. For if $e^{h(z)}=f(z)$ then for any integer n we also have $e^{h(z)+2 \pi n i}=f(z)$.

Problem 2. Prove Theorem 3 along the following lines.
(a) Explain (this means using some English) why there is an analytic function $g(z)$ on D with

$$
g^{\prime}(z)=\frac{f^{\prime}(z)}{f(z)}
$$

in D. Hint: Is $f^{\prime}(z) / f(z)$ analytic in D ? (Your can assume that $f^{\prime}(z)$ is analytic, which we will show later.)
(b) With $g(z)$ as in part (a) show that $e^{-g(z)} f(z)$ is constant. Hint: To show that $e^{-g(z)} f(z)$ is constant it is enough to show that its derivative is zero. Note that

$$
\frac{d}{d z}\left(e^{-g(z)} f(z)\right)=-g^{\prime}(z) e^{-g(z)} f(z)+f^{\prime}(z) e^{-g(z)}
$$

and use that $g^{\prime}(z)=f^{\prime}(z) / f(z)$. (At some point you should have a phrase such as "the derivative of $* * * *$ is identically zero so $* * * * *$ is constant.)
(c) Because $e^{-g(z)} f(z)$ is constant there is a complex number α with $e^{-g(z)} f(z)=$ α. As neither $e^{-g(z)}$ nor $f(z)$ vanish this implies that $\alpha \neq 0$. Therefore there is a complex number β with $e^{\beta}=\alpha$. Thus $e^{-g(z)} f(z)=e^{\beta}$. Explain (again using English) why this implies that $h(z)=\beta+g(z)$ is function we are looking for.

Now that we have logarithms we can find roots.
Theorem 4 (Existance of roots). Let D be a simply connected domain and $f(z)$ a function analytic in D with $f(z) \neq 0$ for any $z \in D$. Let n be an a nonzero integer. There there is a analytic function $g(z)$ in D with $g(z)^{n}=f(z)$. We call $g(z)$ an \mathbf{n}-th root of $f(z)$.

Restatement: Non-vanishing analytic functions on simply connected domains have analytic n-th roots. Note that when $n \neq \pm 1$ that the n-th roots are not unique. For if $g(z)^{n}=f(z)$, that also $\left(e^{\frac{2 \pi k i}{n}} g(z)\right)^{n}=f(z)$ for any integer k.
Problem 3. Prove Theorem 4 along the following lines.
(a) Use Theorem 3 to find a function $h(z)$ with $e^{h(z)}=f(z)$.
(b) Let $g(z)=e^{\frac{1}{n} h(z)}$ and explain why $g(z)$ is the function we want.

