
Mathematics 552 Homework due Monday, March 13, 2006.

Recall that a domain is a connected open set. A domain is simply connected iff
it has no holes in it. As examples

Some simply connected domains.

A domain that is not simply connected is called either non-simply connected
or multiply connected. Examples:

Some multiply connected domains.

The official definition high brow definition of simply connected is that any closed
curve in the domain can be continuously contracted in the domain to a point. For
domains in the plane this is equivalent to the “no holes” definition, and the “no holes”
version is easier to visualize.

We have proven

Theorem 1 (A form of Cauchy’s Theorem). If D is a simply connected domain and
f(z) is analytic in D, then for any closed curve C in D∫

C

f(z) dz = 0.
�

We used this to show that an analytic function on a simply connected domain has
an antiderivative. More precisely:

Theorem 2 (Exsitance of antiderivatives). If D is simply and f(z) is analytic in D,
then there is an analytic function F (z) on D with F ′(z) = f(z). �

This is false if the domain is not simply connected.

Problem 1. Show that the analytic function f(z) = 1/z does not have an anti-
derivative on the domain D := {z : 1/2 < |z| < 2}. Hint: Suppose that f(z)



did have any antiderivative F (z). Then for any curve C in D we have
∫

C
f(z) dz =

F (CInitial) − F (CEnd). In particular this implies that if C is a closed curve that∫
C

f(z) dz = 0. Now get a contradiction by showing that if C is the curve |z| = 1

transversed counterclockwise that
∫

C
f(z) dz =

∫
C

dz
z
6= 0. �

The existence of antiderivatives has nice consequences.

Theorem 3 (Existance of Logarithms on Simply Connected Domains). Let D be
simply connected and f(z) analytic on D with f(z) 6= 0 at any point of D. Then
there is an analytic function h(z) in D with eh(z) = f(z). We call h(z) a logarithm
of f(z). �

Restatement: A non-vanishing analytic function in a simply connected domain has
an analytic logarithm. Note that the function h(z) is not unique. For if eh(z) = f(z)
then for any integer n we also have eh(z)+2πni = f(z).

Problem 2. Prove Theorem 3 along the following lines.

(a) Explain (this means using some English) why there is an analytic function
g(z) on D with

g′(z) =
f ′(z)

f(z)

in D. Hint: Is f ′(z)/f(z) analytic in D? (Your can assume that f ′(z) is
analytic, which we will show later.)

(b) With g(z) as in part (a) show that e−g(z)f(z) is constant. Hint: To show that
e−g(z)f(z) is constant it is enough to show that its derivative is zero. Note
that

d

dz

(
e−g(z)f(z)

)
= −g′(z)e−g(z)f(z) + f ′(z)e−g(z)

and use that g′(z) = f ′(z)/f(z). (At some point you should have a phrase
such as “the derivative of **** is identically zero so ***** is constant.)

(c) Because e−g(z)f(z) is constant there is a complex number α with e−g(z)f(z) =
α. As neither e−g(z) nor f(z) vanish this implies that α 6= 0. Therefore there
is a complex number β with eβ = α. Thus e−g(z)f(z) = eβ. Explain (again
using English) why this implies that h(z) = β+g(z) is function we are looking
for. �

Now that we have logarithms we can find roots.

Theorem 4 (Existance of roots). Let D be a simply connected domain and f(z) a
function analytic in D with f(z) 6= 0 for any z ∈ D. Let n be an a nonzero integer.
There there is a analytic function g(z) in D with g(z)n = f(z). We call g(z) an n-th
root of f(z). �

Restatement: Non-vanishing analytic functions on simply connected domains have
analytic n-th roots. Note that when n 6= ±1 that the n-th roots are not unique. For

if g(z)n = f(z), that also
(
e

2πki
n g(z)

)n

= f(z) for any integer k.

Problem 3. Prove Theorem 4 along the following lines.

(a) Use Theorem 3 to find a function h(z) with eh(z) = f(z).

(b) Let g(z) = e
1
n

h(z) and explain why g(z) is the function we want. �


