Mathematics 552 Homework due Wednesday, March 3, 2006.

Recall that if f(x, y) is a function of two variables, then its **gradient** is the vector field $\nabla f(x, y) = (f_x, f_y)$. A standard fact is that the gradient is perpendicular to the curves defined by f(x, y) = C where C is a constant.

Problem 1. Let f = u + iv be an analytic function in an domain U.

- (a) Use the Cauchy-Riemann equation so show that at each point of U that $\|\nabla u\| = \|\nabla v\|$ (that is at any point of U the gradients of u have the same length) and that ∇u and ∇v are always perpendicular. (That is the dot product $\nabla u \cdot \nabla v = 0$.)
- (b) Use that ∇u and ∇v are always perpendicular to explain why for any constants a and b the curves u = a and v = b meet at right angles. (At least if the curves meet at a point where $f'(z) \neq 0$.)
- (c) Let $f(z) = z^2$. Find u and v and graph some of the curves u = a and v = b. \Box

Shortly we will need to know how to expand some ratio anal function into series. Recall that if w is a complex number with |w| < 1 that

(1)
$$\frac{1}{1-w} = 1 + w + w^2 + w^3 + \dots = \sum_{k=0}^{\infty} w^k.$$

Problem 2. If z, z_0 , and ζ are complex numbers with $|z - z_0| < |\zeta - z_0|$ show that

$$\frac{1}{\zeta - z} = \frac{1}{(\zeta - z_0)} \left(1 + \left(\frac{z - z_0}{\zeta - z_0}\right) + \left(\frac{z - z_0}{\zeta - z_0}\right)^2 + \left(\frac{z - z_0}{\zeta - z_0}\right)^3 + \cdots \right) \\ = \sum_{k=0}^{\infty} \frac{(z - z_0)^k}{(\zeta - z_0)^{k+1}}.$$

HINT: Start with

$$\frac{1}{\zeta - z} = \frac{1}{(\zeta - z_0) - (z - z_0)} = \left(\frac{1}{\zeta - z_0}\right) \left(\frac{1}{1 - \left(\frac{z - z_0}{\zeta - z_0}\right)}\right)$$

and use (1).

Problem 3. If z, z_0 , and ζ are complex numbers with $|\zeta - z_0| < |z - z_0|$ show that

$$\frac{1}{\zeta - z} = \frac{-1}{(z - z_0)} \left(1 + \left(\frac{\zeta - z_0}{z - z_0}\right) + \left(\frac{\zeta - z_0}{z - z_0}\right)^2 + \left(\frac{\zeta - z_0}{z - z_0}\right)^3 + \cdots \right)$$
$$= -\sum_{k=1}^{\infty} \frac{(\zeta - z_0)^{k-1}}{(z - z_0)^k}.$$

HINT: This time start with

$$\frac{1}{\zeta - z} = \frac{1}{(\zeta - z_0) - (z - z_0)} = \left(\frac{-1}{z - z_0}\right) \left(\frac{1}{1 - \left(\frac{\zeta - z_0}{z - z_0}\right)}\right)$$

and use (1).