## Mathematics 552 Homework due Wednesday, March 3, 2006.

Recall that if $f(x, y)$ is a function of two variables, then its gradient is the vector field $\nabla f(x, y)=\left(f_{x}, f_{y}\right)$. A standard fact is that the gradient is perpendicular to the curves defined by $f(x, y)=C$ where $C$ is a constant.
Problem 1. Let $f=u+i v$ be an analytic function in an domain $U$.
(a) Use the Cauchy-Riemann equation so show that at each point of $U$ that $\|\nabla u\|=\|\nabla v\|$ (that is at any point of $U$ the gradients of $u$ have the same length) and that $\nabla u$ and $\nabla v$ are always perpendicular. (That is the dot product $\nabla u \cdot \nabla v=0$.)
(b) Use that $\nabla u$ and $\nabla v$ are always perpendicular to explain why for any constants $a$ and $b$ the curves $u=a$ and $v=b$ meet at right angles. (At least if the curves meet at a point where $f^{\prime}(z) \neq 0$.)
(c) Let $f(z)=z^{2}$. Find $u$ and $v$ and graph some of the curves $u=a$ and $v=b$.

Shortly we will need to know how to expand some ratioanal function into series. Recall that if $w$ is a complex number with $|w|<1$ that

$$
\begin{equation*}
\frac{1}{1-w}=1+w+w^{2}+w^{3}+\cdots=\sum_{k=0}^{\infty} w^{k} . \tag{1}
\end{equation*}
$$

Problem 2. If $z, z_{0}$, and $\zeta$ are complex numbers with $\left|z-z_{0}\right|<\left|\zeta-z_{0}\right|$ show that

$$
\begin{aligned}
\frac{1}{\zeta-z} & =\frac{1}{\left(\zeta-z_{0}\right)}\left(1+\left(\frac{z-z_{0}}{\zeta-z_{0}}\right)+\left(\frac{z-z_{0}}{\zeta-z_{0}}\right)^{2}+\left(\frac{z-z_{0}}{\zeta-z_{0}}\right)^{3}+\cdots\right) \\
& =\sum_{k=0}^{\infty} \frac{\left(z-z_{0}\right)^{k}}{\left(\zeta-z_{0}\right)^{k+1}}
\end{aligned}
$$

Hint: Start with

$$
\frac{1}{\zeta-z}=\frac{1}{\left(\zeta-z_{0}\right)-\left(z-z_{0}\right)}=\left(\frac{1}{\zeta-z_{0}}\right)\left(\frac{1}{1-\left(\frac{z-z_{0}}{\zeta-z_{0}}\right)}\right)
$$

and use (1).
Problem 3. If $z, z_{0}$, and $\zeta$ are complex numbers with $\left|\zeta-z_{0}\right|<\left|z-z_{0}\right|$ show that

$$
\begin{aligned}
\frac{1}{\zeta-z} & =\frac{-1}{\left(z-z_{0}\right)}\left(1+\left(\frac{\zeta-z_{0}}{z-z_{0}}\right)+\left(\frac{\zeta-z_{0}}{z-z_{0}}\right)^{2}+\left(\frac{\zeta-z_{0}}{z-z_{0}}\right)^{3}+\cdots\right) \\
& =-\sum_{k=1}^{\infty} \frac{\left(\zeta-z_{0}\right)^{k-1}}{\left(z-z_{0}\right)^{k}}
\end{aligned}
$$

Hint: This time start with

$$
\frac{1}{\zeta-z}=\frac{1}{\left(\zeta-z_{0}\right)-\left(z-z_{0}\right)}=\left(\frac{-1}{z-z_{0}}\right)\left(\frac{1}{1-\left(\frac{\zeta-z_{0}}{z-z_{0}}\right)}\right)
$$

and use (1).

