
Mathematics 552 Homework due Wednesday, March 3, 2006.

Recall that if f(x, y) is a function of two variables, then its gradient is the vector
field ∇f(x, y) = (fx, fy). A standard fact is that the gradient is perpendicular to the
curves defined by f(x, y) = C where C is a constant.

Problem 1. Let f = u + iv be an analytic function in an domain U .

(a) Use the Cauchy-Riemann equation so show that at each point of U that
‖∇u‖ = ‖∇v‖ (that is at any point of U the gradients of u have the same
length) and that ∇u and ∇v are always perpendicular. (That is the dot
product ∇u · ∇v = 0.)

(b) Use that ∇u and ∇v are always perpendicular to explain why for any constants
a and b the curves u = a and v = b meet at right angles. (At least if the curves
meet at a point where f ′(z) 6= 0.)

(c) Let f(z) = z2. Find u and v and graph some of the curves u = a and v = b. �
Shortly we will need to know how to expand some ratioanal function into series.

Recall that if w is a complex number with |w| < 1 that
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Problem 2. If z, z0, and ζ are complex numbers with |z − z0| < |ζ − z0| show that
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and use (1). �
Problem 3. If z, z0, and ζ are complex numbers with |ζ − z0| < |z − z0| show that
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and use (1). �


