Mathematics 552 Homework due Wednesday, March 1, 2006

Problem 1. Let $f(z), g(z)$ be a continuous complex valued functions defined on curve C parameterized by $z(t)$ with $a \leq t \leq b$.
(a) Show $\int_{C}(f(z)+g(z)) d z=\int_{C} f(z) d z+\int_{C} g(z) d z$.
(b) Show that for any complex number $\alpha \int_{C} \alpha f(z) d z=\alpha \int_{C} f(z) d z$

We have shown that if $f(z)$ is analytic in a domain D and has an antiderivative $F(z)$ in D, that if $F^{\prime}(z)=f(z)$. Then for any curve C in D

$$
\int_{C} f(z) d z=F\left(C_{\mathrm{END}}\right)-F\left(C_{\mathrm{INITIAL}}\right)
$$

where $C_{\text {Initial }}$ is the initial point of C and $C_{\text {End }}$ is the end point of C.
Problem 2. Use this to compute the following integrals.
(a) $\int_{C} z^{11} d z$ where C is the line segment from 0 to $1+i$. Simplify your answer.
(b) $\int_{C} \cos (z) d z$ where C is the top half of the circle $|z|=\pi / 2$ going from $-\pi / 2$ to $\pi / 2$.
(c) $\int_{C} z^{3} e^{z^{4}} d z$ where C is the circle $|z-3|=5$ transversed once in the counterclockwise direction. Hint: Before doing any computations thank about what how the initial and end points of C are related.

Problem 3. This problem is in part to review a bit about the functions x^{α}. Let U be the open set $U \backslash\{z: \operatorname{Im} z=0, \operatorname{Re} z<0\}$. That is U is the complex plane with the nonnegative real numbers deleted. Let α be a complex number and let

$$
f(z)=\text { Principle branch of } z^{\alpha} .
$$

Explicitly $f(z)$ is the function defined in U by

$$
\begin{equation*}
f(z)=e^{\alpha \log (z)} \tag{1}
\end{equation*}
$$

where $\log (z)$ is the principle branch of the logarithm. We have shown that $\log (z)$ is analytic in U with derivative $1 / z$.
(a) Draw U and explain briefly why $f(z)$ is analytic in U.
(b) If $\alpha \neq-1$ find an antiderivative for $f(z)$. That is we what a function $F(z)$ with $F^{\prime}(z)=f(z)$. Give precise definition of $F(z)$ and explain why it works (this will involve at least a bit of English). Hint: What to you expect the antiderivative of z^{α} to be? Now define this along the lines of equation (1) and verify that if works.

