Mathematics 552 Homework due Wednesday, March 1, 2006

Problem 1. Let f(z), g(z) be a continuous complex valued functions defined on curve C parameterized by z(t) with $a \le t \le b$.

(a) Show
$$\int_C (f(z) + g(z)) dz = \int_C f(z) dz + \int_C g(z) dz$$
.
(b) Show that for any complex number $\alpha \int_C \alpha f(z) dz = \alpha \int_C f(z) dz$

We have shown that if f(z) is analytic in a domain D and has an antiderivative F(z) in D, that if F'(z) = f(z). Then for any curve C in D

$$\int_{C} f(z) \, dz = F(C_{\text{END}}) - F(C_{\text{INITIAL}})$$

where C_{INITIAL} is the initial point of C and C_{END} is the end point of C.

Problem 2. Use this to compute the following integrals.

- (a) $\int_C z^{11} dz$ where C is the line segment from 0 to 1 + i. Simplify your answer.
- (b) $\int_C \cos(z) dz$ where C is the top half of the circle $|z| = \pi/2$ going from $-\pi/2$ to $\pi/2$.
- (c) $\int_C z^3 e^{z^4} dz$ where C is the circle |z-3| = 5 transversed once in the counterclockwise direction. HINT: Before doing any computations thank about what how the initial and end points of C are related.

Problem 3. This problem is in part to review a bit about the functions x^{α} . Let U be the open set $U \setminus \{z : \text{Im } z = 0, \text{Re } z < 0\}$. That is U is the complex plane with the nonnegative real numbers deleted. Let α be a complex number and let

f(z) = Principle branch of z^{α} .

Explicitly f(z) is the function defined in U by

(1)
$$f(z) = e^{\alpha \operatorname{Log}(z)}$$

where Log(z) is the principle branch of the logarithm. We have shown that Log(z) is analytic in U with derivative 1/z.

- (a) Draw U and explain briefly why f(z) is analytic in U.
- (b) If $\alpha \neq -1$ find an antiderivative for f(z). That is we what a function F(z) with F'(z) = f(z). Give precise definition of F(z) and explain why it works (this will involve at least a bit of English). HINT: What to you expect the antiderivative of z^{α} to be? Now define this along the lines of equation (1) and verify that if works.