Mathematics 552 Homework due Friday, February 24, 2006

Recall that a map $f: U_1 \to U_2$ between two domains is **conformal** iff it is one to one, onto, and analytic.

(a) Draw $U_1 = \{z : \text{Re}(z) > 0, \text{Im}(z) > 0\}$. (The first quadrant.) Problem 1.

- (b) Draw $U_2 = \{z : \text{Im}(z) > 0\}$. (The upper half plane.) (c) Show that $f(z) = z^2$ is a conformal map from U_1 to U_2 .

Problem 2. Let $0 < \alpha < 2\pi$.

- (a) Draw $U_1 = \{ z : 0 < \text{Im}(z) < \alpha \}.$
- (b) Draw $U_2 = \{z : 0 < \operatorname{Arg}(z) < \alpha\}.$
- (c) Show that $f(z) = e^z$ is a conformal map from U_1 to U_2 .

The following is a bit trickier.

Problem 3. Let $D = \{z : |z| < 1\}$ be the open unit disk. Let |a| < 1 and let φ be the Möbius transformation

$$\varphi(z) = \frac{z-a}{\overline{a}z-1}$$

Show that φ is a conformal map of D to itself.

Problem 4. If C is the line segment from 1 + 2i to 3 + 4i this compute

(a)
$$\int_C z^2 dz$$
. (b) $\int_C \overline{z} dz$

Problem 5. Let $r_0 > 0$ and C the curve parameterized by $z(t) = r_0 e^{it}$ with $0 \leq 1$ $t \leq 2\pi$. (This parameterizes the circle $|z| = r_0$ in the counterclockwise direction.) Compute

(a)
$$\int_C z^2 dz$$
. (b) $\int_C \frac{dz}{z}$.

Problem 6. Let c be the complex number c = a + bi. Then the antiderivative of $f(z) = e^{cz}$ is $F(z) = \frac{e^{cz}}{c}$. By taking real and imaginary parts of thus find the real integrals

$$\int e^{ax} \cos(bx) \, dx$$
, and $\int e^{ax} \sin(bx) \, dx$.

Problem 7. Let D be a bounded domain with nice boundary and f(z) = u + iv and analytic function on D. Then apply Green's theorem (see below) to the integral

$$\int_{\partial D} f(z) \, dz$$

and use the Cauchy-Riemann equations to simplify.

Quiz on Friday.

Know the statement of Green's theorem.

Green's Theorem. If D is a bounded domain in \mathbb{R}^2 with nice boundary ∂D , and P(x,y) and Q(x,y) have continuous first partial derivatives, then

$$\int_{\partial D} P \, dx + Q \, dy = \iint_D \left(-P_y + Q_x \right) \, dx dy.$$