Mathematics 552 Homework due Wednesday, February 22, 2006

Let o and z be complex numbers with z # 0. Then set
(1) 2. ealog(z)
where, as usual,
log(z) = In(|2]) + i arg(z).
Note in general z* will be multivalued because log is multivalued. But let’s see what
happens for some special values of a. First we try a = 1.
Zl — ellog(z) _ 6log(z) — -

as we would like. For o = 2, and using that e*™ = 1,
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where the first 22 is as defined by (1) and the last 22 is the sense of z? = z - z that
are are use to. Therefore the new definition of z? agree with the familiar one and is
single valued. Likewise
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This for & = —2 the new definition of 2~2 agrees with the old one and is single valued.

Problem 1. If « is an integer, positive or negative, show that z¢ is single valued and
the new definition of 2® agrees with the old high school algebra of z. O

2
Now let aa = 3" Then
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The complex number e3M(=)+iArs(=) g well defined (i.e. single valued), but as n

varies over the integers '™ varies over the three cube roots of 1 and therefore 25 is
three valued. More generally

Problem 2. Show that if @ = E is a rational number in lowest terms, then z¢ is a
g-valued. That is for each value of z # 0 there are ¢ values of 2. O

This leaves one case.

Problem 3. If a is not a rational number show that z* always has in infinite number
of values. L.

To get a single valued version of 2* we define
Principle branch of z* := e*108(2),

This has the usual defect of having a jump discounted along the negative real axis.



Problem 4. Compute the following.
(a) 1V2.

(b) (24)". .
(¢) The Principle branch of (2i)".
(d) 167 and put the answers in the form a + bi. O

Problem 5. Read pages 68-73 (up to Green’s formula) about line integrals in the
text and compute the following. (cf. Example 3.1.3 on page 73 of the text).

(a) /(:U2 + y?) dx + 3xy dy where C is the curve y = 2% from the point (0,0) to
c
(1,1).
(b) / (2% + y*) dx + 3y dy where C is the straight line segment from the point
c
(0,0) to (1,1).
(c) /(:lc2 + y?) dx + 3xy dy where C' is the curve z(t) = t + 4t3 from the point
c
(0,0) to (1,1).

Computing 7.
Josh ask the question of using the series
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Historically this is how this was used. From the addition formula for tan we can show

T A arct 1 ; 1
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This leads to the series
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That is

This was used by Shanks in 1873 to compute 7w to 707 decimal places. However it
was found in 1945 that he was wrong after the 527-th decimal place.

To the best of my knowledge (as supplemented by Google) the current record is
1,241,100,000,000 digits by Kanada, Ushiro, and Kurodo in 2002.



