Mathematics 552 Homework due Wednesday, February 22, 2006

Let α and z be complex numbers with $z \neq 0$. Then set

$$
\begin{equation*}
z^{\alpha}:=e^{\alpha \log (z)} \tag{1}
\end{equation*}
$$

where, as usual,

$$
\log (z)=\ln (|z|)+i \arg (z)
$$

Note in general z^{α} will be multivalued because \log is multivalued. But let's see what happens for some special values of α. First we try $\alpha=1$.

$$
z^{1}=e^{1 \log (z)}=e^{\log (z)}=z
$$

as we would like. For $\alpha=2$, and using that $e^{2 \pi i}=1$,

$$
\begin{aligned}
z^{2} & =e^{2 \log (z)}=e^{2(\ln (|z|)+i \operatorname{Arg}(z)+2 n \pi i)}=e^{2(\ln (|z|)+i \operatorname{Arg}(z))+4 n \pi i} \\
& =e^{2(\ln (|z|)+i \operatorname{Arg}(z))} e^{4 n \pi i}=\left(e^{\ln (|z|)+i \operatorname{Arg}(z)}\right)^{2}(1) \\
& =(z)^{2}=z^{2}
\end{aligned}
$$

where the first z^{2} is as defined by (1) and the last z^{2} is the sense of $z^{2}=z \cdot z$ that are are use to. Therefore the new definition of z^{2} agree with the familiar one and is single valued. Likewise

$$
\begin{aligned}
z^{-2} & =e^{-2 \log (z)}=e^{-2(\ln (|z|)+i \operatorname{Arg}(z)+2 n \pi i)}=e^{-2(\ln (|z|)+i \operatorname{Arg}(z))-4 n \pi i} \\
& =e^{-2(\ln (|z|)+i \operatorname{Arg}(z))} e^{-4 n \pi i}=\left(e^{\ln (|z|)+i \operatorname{Arg}(z)}\right)^{-2}(1) \\
& =(z)^{-2}=z^{-2}
\end{aligned}
$$

This for $\alpha=-2$ the new definition of z^{-2} agrees with the old one and is single valued.
Problem 1. If α is an integer, positive or negative, show that z^{α} is single valued and the new definition of z^{α} agrees with the old high school algebra of z^{α}.

Now let $\alpha=\frac{2}{3}$. Then

$$
\begin{aligned}
z^{\frac{2}{3}} & =e^{\frac{2}{3} \log (z)}=e^{\frac{2}{3}(\ln (|z|)+i \operatorname{Arg}(z)+2 n \pi i)}=e^{\frac{2}{3}(\ln (|z|)+i \operatorname{Arg}(z))+\frac{4 n}{3} \pi i} \\
& =e^{\frac{2}{3}(\ln (|z|)+i \operatorname{Arg}(z))} e^{\frac{4 n}{3} \pi i}
\end{aligned}
$$

The complex number $e^{\frac{2}{3}(\ln (|z|)+i \operatorname{Arg}(z))}$ is well defined (i.e. single valued), but as n varies over the integers $e^{\frac{4 n}{3} \pi i}$ varies over the three cube roots of 1 and therefore $z^{\frac{2}{3}}$ is three valued. More generally
Problem 2. Show that if $\alpha=\frac{p}{q}$ is a rational number in lowest terms, then z^{α} is a q-valued. That is for each value of $z \neq 0$ there are q values of z^{α}.

This leaves one case.
Problem 3. If α is not a rational number show that z^{α} always has in infinite number of values.

To get a single valued version of z^{α} we define Principle branch of $z^{\alpha}:=e^{\alpha \log (z)}$.
This has the usual defect of having a jump discounted along the negative real axis.

Problem 4. Compute the following.
(a) $1^{\sqrt{2}}$.
(b) $(2 i)^{i}$.
(c) The Principle branch of $(2 i)^{i}$.
(d) $16^{\frac{3}{4}}$ and put the answers in the form $a+b i$.

Problem 5. Read pages 68-73 (up to Green's formula) about line integrals in the text and compute the following. (cf. Example 3.1.3 on page 73 of the text).
(a) $\int_{C}\left(x^{2}+y^{2}\right) d x+3 x y d y$ where C is the curve $y=x^{2}$ from the point $(0,0)$ to $(1,1)$.
(b) $\int_{C}\left(x^{2}+y^{2}\right) d x+3 x y d y$ where C is the straight line segment from the point $(0,0)$ to $(1,1)$.
(c) $\int_{C}\left(x^{2}+y^{2}\right) d x+3 x y d y$ where C is the curve $z(t)=t^{2}+i t^{3}$ from the point $(0,0)$ to $(1,1)$.

Computing π.

Josh ask the question of using the series

$$
\begin{aligned}
\arctan (r) & =\int_{0}^{r} \frac{d x}{1+x^{2}}=\int_{0}^{r}\left(1-x^{2}+x^{4}-x^{6}+\cdots\right) d x \\
& =r-\frac{r^{3}}{3}+\frac{r^{5}}{5}-\frac{r^{7}}{7}+\frac{r^{9}}{9}-\cdots \\
& =\sum_{k=0}^{\infty} \frac{(-1)^{k} r^{2 k+1}}{2 k+1} .
\end{aligned}
$$

Historically this is how this was used. From the addition formula for tan we can show

$$
\frac{\pi}{4}=4 \arctan \left(\frac{1}{5}\right)-\arctan \left(\frac{1}{239}\right)
$$

That is

$$
\pi=16 \arctan \left(\frac{1}{5}\right)-4 \arctan \left(\frac{1}{239}\right) .
$$

This leads to the series

$$
\pi=16 \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1) 5^{2 k+1}}-4 \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)(239)^{2 k+1}}
$$

This was used by Shanks in 1873 to compute π to 707 decimal places. However it was found in 1945 that he was wrong after the 527-th decimal place.

To the best of my knowledge (as supplemented by Google) the current record is 1,241,100,000,000 digits by Kanada, Ushiro, and Kurodo in 2002.

