Mathematics 552 Homework due Monday, February 13, 2006

Reminder: The first test is Wednesday, February 15.
We have defined a linear fractional transformation or Möbius transformation to be a transformation of the form

$$
f(z)=\frac{a z+b}{c z+d} \quad \text { where } \quad a d-b c \neq 0
$$

See the text pp. 43-51 for a nice discussion of these transformations.
(1) Show that if $f(z)$ and $g(z)$ are both Möbius transformations then so is the composition $f \circ g(z)=f(g(z))$.
If $f(z)=\frac{a z+b}{c z+d}$ is a Möbius transformation we define

$$
f(\infty)=\frac{a}{c}
$$

and

$$
f(-d / c)=\infty
$$

(The number $z=-d / c$ is the number that makes the denominator equal to zero.)
(2) With these conventions show that for any three distinct complex numbers z_{1}, z_{2}, z_{3} that there is a unique Möbius transformation with

$$
f\left(z_{1}\right)=0, \quad f\left(z_{2}\right)=1, \quad f\left(z_{3}\right)=\infty .
$$

(3) Find the Möbius transformation $f(z)$ such that $f(2)=0, f(3)=1$, and $f(i)=\infty$.
(4) Find a Möbius transformation that maps the unit disk $\{|z|<1\}$ onto upper half space $\{\operatorname{Im} z>0\}$. Hint: Such a transformation will map the unit circle $\{|z|=1\}$ onto the real line $\{\operatorname{Im} z=0\}$. So try mapping three points on the unit circle, say $0,1, i$ to the three points on the real line, say 0,1 and ∞. Then check to see if you have mapped upper rather than the lower half plane. If your mapped onto the lower half plane just multiply what you have by -1 .
We now return to the Cauchy-Riemann equations. Recall that these are that if $f(z)=u(x, y)+i v(x, y)$ is analytic then

$$
u_{x}=v_{y}, \quad u_{y}=-v_{x} .
$$

A function $h(x, y)$ is harmonic iff it satisfies the differential equation

$$
h_{x x}+h_{y y}=0
$$

(5) Use the Cauchy-Riemann equations to show that if $f(z)=u(x, y)+i v(x, y)$ is analytic, then both u and v are harmonic.

We will need the chain rule for functions of two variables. Let $h(x, y)$ be a differentiable function of x and y and assume that $x=x(t)$ and $y=y(t)$ are differentiable functions of t. Then the chain rule is

$$
\frac{d}{d t} h(x(t), y(t))=\frac{\partial h}{\partial x} \frac{d x}{d t}+\frac{\partial h}{\partial y} \frac{d y}{d t} .
$$

If we use the physicists convection that $\dot{x}=\frac{d x}{d t}$ this is

$$
\frac{d}{d t} h(x(t), y(t))=h_{x} \dot{x}+h_{y} \dot{y} .
$$

Quiz on Monday. Know the following chain rule just given and also that if $f(z)=u+i v$ is analytic that

$$
f^{\prime}(z)=u_{x}+i v_{x}=v_{y}-i u_{y} .
$$

