Mathematics 552 Test #2 Name:

Show your work! Answers that do not have a justification will receive no credit.

- 1. (12 Points) Define the following:
 - (a) f is analytic in the open set U.
 - (b) The function f is entire.
 - (c) The function ϕ is harmonic in the open set U.
 - (d) The functions u and v are conjugate harmonic functions in the open set U.
- 2. (8 Points) Find the derivatives of the following: (a) $f(z) = \exp(1 + z^2)$.

(b) $h(z) = z(\sin(z) + \cos(3z))^4$.

- 3. (15 Points) Compute the following. (a) $Log(\pi i)$
 - (b) All values of $(3i)^i$

(c) $\sin(1+2i)$ (put the answer in the form a+bi).

- 4. (10 Points) Let α be a complex number and let $f(z) = z^{\alpha}$ be the principle branch of z^{α} .
 - (a) Give the definition of f(z) in terms of the exponential and Log.
 - (b) Use this definition to find a formula for f'(z). (Simplify your answer.)

5. (10 Points) Find all the harmonic conjugates to $u = x^3 - 3xy^2 - y$.

6. (15 Points) Let $f(z) = (x^2 - y^2 - 4xy - y) + (2xy + 2x^2 - 2y^2 + x)i$ (a) Show is f(z) is entire.

(b) Compute the derivative of f(z).

7. (10 Points) Find all solutions to $\tan(z) = -2i$

- 8. (10 Points) Let f = u + v i be a complex valued function which is analytic on the open subset U of \mathbb{C} .
 - (a) State the Cauchy-Riemann equations for f.
 - (b) (10 Points) Use the Cauchy-Riemann equations for f to show that $u = \operatorname{Re}(f)$ is harmonic.

9. (10 Points) If f(z) is an entire function so that Im(f) is constant, then show that f(z) is constant.