Mathematics 552 Test \#2 Name:

Show your work! Answers that do not have a justification will receive no credit.

1. (12 Points) Define the following:
(a) f is analytic in the open set U.
(b) The function f is entire.
(c) The function ϕ is harmonic in the open set U.
(d) The functions u and v are conjugate harmonic functions in the open set U.
2. (8 Points) Find the derivatives of the following:
(a) $f(z)=\exp \left(1+z^{2}\right)$.
(b) $h(z)=z(\sin (z)+\cos (3 z))^{4}$.
3. (15 Points) Compute the following.
(a) $\log (\pi i)$
(b) All values of $(3 i)^{i}$
(c) $\sin (1+2 i)$ (put the answer in the form $a+b i$. \qquad
4. (10 Points) Let α be a complex number and let $f(z)=z^{\alpha}$ be the principle branch of z^{α}.
(a) Give the definition of $f(z)$ in terms of the exponential and Log.
(b) Use this definition to find a formula for $f^{\prime}(z)$. (Simplify your answer.)
5. (10 Points) Find all the harmonic conjugates to $u=x^{3}-3 x y^{2}-y$.
6. (15 Points) Let $f(z)=\left(x^{2}-y^{2}-4 x y-y\right)+\left(2 x y+2 x^{2}-2 y^{2}+x\right) i$ (a) Show is $f(z)$ is entire.
(b) Compute the derivative of $f(z)$.
7. (10 Points) Find all solutions to $\tan (z)=-2 i$
8. (10 Points) Let $f=u+v i$ be a complex valued function which is analytic on the open subset U of \mathbb{C}.
(a) State the Cauchy-Riemann equations for f.
(b) (10 Points) Use the Cauchy-Riemann equations for f to show that $u=$ $\operatorname{Re}(f)$ is harmonic.
9. (10 Points) If $f(z)$ is an entire function so that $\operatorname{Im}(f)$ is constant, then show that $f(z)$ is constant.
