Mathematics 552 Test #1 Name:

Show your work! Answers that do not have a justification will receive no credit.

1. (30 Points) Compute the following: (a) (4-3i)(6+2i)

(b)
$$\frac{5+2i}{3+4i}$$

(c)
$$Arg(-3-3i)$$

(d)
$$\arg(-1 + \sqrt{3}i)$$

(e)
$$(-1 + \sqrt{3}i)^{11}$$

(f)
$$\left| \frac{(\sqrt{3}+i)^9}{(\sqrt{3}-i)^8} \right|$$

(g) $e^{2+\frac{\pi}{4}i}$

(h)
$$\text{Im}[(4-5i)(x+yi)]$$

2. (10 Points) Find all values of $(-27)^{\frac{2}{3}}$.

3. (10 Points) Show that $e^z + e^{\overline{z}} = 2e^{\operatorname{Re} z} \cos(\operatorname{Im} z)$

4. (15 Points) Draw pictures of the following sets of complex numbers: (a) $|z-4-3\,i|<2$

(b)
$$2 < |z| < 3$$
 and $\frac{\pi}{2} < \operatorname{Arg}(z) < \pi$

(c)
$$\operatorname{Re}[(2-3i)z] < 6$$

5. (10 Points) Let

 $A = \{z : 1 < |z| < 3\}, \qquad B = \{z : |z| \ge 5\}, \qquad C = \{z : \operatorname{Re} z > 0, |z| \le 4\}$ Then (a) Which of these sets is open?

(b) Which of these sets are domains?

- (c) Which of these sets are regions?
- (d) Which of these sets are bounded?
- 6. (15 Points) Solve the following equations:

(a)
$$\frac{1+z}{1-z} = 3+4i$$
 $z =$ _____

(b) $z^2 + (-3 + 3i)z - 5i = 0$

z = _____

7. (10 Points) One cube root of -512 is $4 + 4\sqrt{3}i$. Plot all of the cube roots.