Mathematics 552 Test \#1 Name:

Show your work! Answers that do not have a justification will receive no credit.

1. (30 Points) Compute the following:
(a) $(4-3 i)(6+2 i)$
(b) $\frac{5+2 i}{3+4 i}$
(c) $\operatorname{Arg}(-3-3 i)$
(d) $\arg (-1+\sqrt{3} i)$
(e) $(-1+\sqrt{3} i)^{11}$
(f) $\left|\frac{(\sqrt{3}+i)^{9}}{(\sqrt{3}-i)^{8}}\right|$
(g) $e^{2+\frac{\pi}{4} i}$
(h) $\operatorname{Im}[(4-5 i)(x+y i)]$
2. (10 Points) Find all values of $(-27)^{\frac{2}{3}}$.
3. (10 Points) Show that $e^{z}+e^{\bar{z}}=2 e^{\operatorname{Re} z} \cos (\operatorname{Im} z)$
4. (15 Points) Draw pictures of the following sets of complex numbers: (a) $|z-4-3 i|<2$
(b) $2<|z|<3$ and $\frac{\pi}{2}<\operatorname{Arg}(z)<\pi$
(c) $\operatorname{Re}[(2-3 i) z]<6$
5. (10 Points) Let
$A=\{z: 1<|z|<3\}, \quad B=\{z:|z| \geq 5\}, \quad C=\{z: \operatorname{Re} z>0,|z| \leq 4\}$
Then
(a) Which of these sets is open?
(b) Which of these sets are domains?
(c) Which of these sets are regions?
(d) Which of these sets are bounded?
6. (15 Points) Solve the following equations:
(a) $\frac{1+z}{1-z}=3+4 i$
$z=$ \qquad
(b) $z^{2}+(-3+3 i) z-5 i=0$
$z=$ \qquad
7. (10 Points) One cube root of -512 is $4+4 \sqrt{3} i$. Plot all of the cube roots.
