## Final

Name:
Show your work! Answers that do not have a justification will receive no credit.

1. (20 points) Compute the following:
(a) All values of $\sqrt[3]{i}$.
(b) All values of $i^{2 i}$.
(c) $\log (-3-3 i)$.
(d) All roots to $z^{2}-2 i z-10=0$.
2. (20 points) (a) Use $e^{(\alpha+\beta) i}=e^{\alpha i} e^{\beta i}$ to derive the addition formula for the sine function.
(b) Show that $\left|e^{z}\right|=e^{\operatorname{Re} z}$.
3. (20 points) (a) State the Cauchy-Riemannian equations.
(b) Show that if $f(z)=u+i v$ is analytic and $|f|^{2}=u^{2}+v^{2}$ is constant then $f$ is constant.
4. (15 points) (a) Graph $|(1+i) z+2|=4$
(b) What is the image of $D=\{z: 1<|z|<2,0<\operatorname{Arg}(z)<\pi / 4\}$ under the map $f(z)=z^{4}$. Graph both $D$ and the image $f[D]$.
5. (20 points) Let $D$ be a domain with smooth boundary and let $f(z)$ be analytic in $D$. Show that the Cauchy integral theorem $\int_{\partial D} f(z) d z=0$ holds. You may use Green's theorem:
$\int_{\partial D}(P d x+Q d y)=\iint_{D}\left(-P_{y}+Q_{x}\right) d x d y$.
6. (20 points) (a) State the Cauchy integral formula.
(b) Evaluate $\int_{|z|=3} \frac{\cos (z) d z}{(z-1)\left(z^{3}-64\right)}$
(c) Evaluate $\int_{|z|=2} \frac{z d z}{(z-1)^{2}}$
7.(15 points) (a) What is the domain of analyticity of the function $f(z)=$ $\frac{\sin \left(z^{3}\right)}{z\left(z^{2}-16\right)}$ ?
(b) For this function what is the radius of convergence if $f(z)$ is expanded as a power series about the point $z=1+4 i$.
7. (15 points)(a) Show that $u(x, y)=x^{4}-6 x^{2} y^{2}+y^{4}$ is harmonic.
(b) Find the harmonic conjugate to $u$.
8. (15 points) (a) Explain why $f(z)=\frac{1}{z}$ has an anti-derivative in $D=\{z$ : $\operatorname{Re} z>0\}$.
(b) Explain why $f(z)=\frac{1}{z}$ does not have an anti-derivative in $A=\{z: 1<$ $|z|<3\}$.
9. (10 points) Find all solutions to $\cos (z)=\frac{5}{4}$.
10. (25 points) Let $h$ be harmonic in the simply connected domain $D$. (a) Show that $f(z)=h_{x}-i h_{y}$ is analytic in $D$.
(b) Explain why the function $f(z)$ has an anti-derivative in $D$.
(c) Show that $h$ is the real part of an analytic function in $D$.
11. Surprise mystery question: 10 free points (and have a good winter break).
