Final

Show your work! Answers that do not have a justification will receive no credit.

- 1. (20 points) Compute the following:
- (a) All values of $\sqrt[3]{i}$.

(b) All values of i^{2i} .

(c) Log(-3-3i).

(d) All roots to $z^2 - 2iz - 10 = 0$.

2. (20 points) (a) Use $e^{(\alpha+\beta)i} = e^{\alpha i}e^{\beta i}$ to derive the addition formula for the sine function.

(b) Show that $|e^z| = e^{\operatorname{Re} z}$.

3. (20 points) (a) State the Cauchy-Riemannian equations.

(b) Show that if f(z) = u + iv is analytic and $|f|^2 = u^2 + v^2$ is constant then f is constant.

4. (15 points) (a) Graph |(1+i)z + 2| = 4

(b) What is the image of $D = \{z : 1 < |z| < 2, 0 < \operatorname{Arg}(z) < \pi/4\}$ under the map $f(z) = z^4$. Graph both D and the image f[D].

5. (20 points) Let D be a domain with smooth boundary and let f(z) be analytic in D. Show that the Cauchy integral theorem $\int_{\partial D} f(z) dz = 0$ holds. You may use Green's theorem: $\int_{\partial D} (P dx + Q dy) = \iint_{D} (-P_y + Q_x) dx dy.$

6. (20 points) (a) State the Cauchy integral formula.

(b) Evaluate
$$\int_{|z|=3} \frac{\cos(z) dz}{(z-1)(z^3-64)}$$

(c) Evaluate
$$\int_{|z|=2} \frac{z \, dz}{(z-1)^2}$$

7.(15 points) (a) What is the domain of analyticity of the function $f(z) = \frac{\sin(z^3)}{z(z^2 - 16)}$?

(b) For this function what is the radius of convergence if f(z) is expanded as a power series about the point z = 1 + 4i.

8. (15 points)(a) Show that $u(x, y) = x^4 - 6x^2y^2 + y^4$ is harmonic.

(b) Find the harmonic conjugate to u.

9. (15 points) (a) Explain why $f(z) = \frac{1}{z}$ has an anti-derivative in $D = \{z : \text{Re } z > 0\}.$

(b) Explain why $f(z) = \frac{1}{z}$ does not have an anti-derivative in $A = \{z : 1 < |z| < 3\}$.

10. (10 points) Find all solutions to $\cos(z) = \frac{5}{4}$.

11. (25 points) Let h be harmonic in the simply connected domain D. (a) Show that $f(z) = h_x - ih_y$ is analytic in D.

(b) Explain why the function f(z) has an anti-derivative in D.

(c) Show that h is the real part of an analytic function in D.

12. Surprise mystery question: 10 free points (and have a good winter break).