Mathematics 550 Final

Name:

1. (10 points) In the figure draw and label both ${\bf a}-{\bf b}$ and $\operatorname{proj}_{\bf a}{\bf b}$

2. (20 points) Let $\mathbf{a} = -\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$, $\mathbf{b} = 2\mathbf{i} - \mathbf{j} + 2\mathbf{k}$, $\mathbf{v} = \mathbf{i} - 2\mathbf{j} + \mathbf{k}$. Then compute (a) the angle between \mathbf{a} and \mathbf{b} .

(b) $\mathbf{a} \times \mathbf{b}$

(c) $\operatorname{comp}_{\mathbf{a}}(\mathbf{v})$

(d) $\operatorname{proj}_{\mathbf{b}}(\mathbf{v})$

3. (10 points) Find parametric equations of the line through the points (1, 3, 4) and (4, -3, 5)

4. (10 points) Find the equation of the plane through the points P = (2, 1, 3), Q = (-2, 1, 6) and R = (8, -4, 1)?

5. (10 points) What is the distance of the point (4, 5, 1) from the plane 2x + 2y - z = 7?

- 6. (10 points) An object moving in the direction $\mathbf{v} = 2\mathbf{i} + 3\mathbf{j} + \mathbf{k}$ is acted on by a force given by the vector $\mathbf{F} = 2\mathbf{i} \mathbf{j} + 3\mathbf{k}$. Express this force as a sum of a force $\mathbf{F}_{||}$ in the direction of motion and a force \mathbf{F}_{\perp} perpendicular to the direction of motion.
 - $\mathbf{F}_{||} =$ _____

7. (25 points) Complete the following identities:

(a)
$$\nabla(fg) =$$

- (b) $\operatorname{div}(f\mathbf{F}) =$
- (c) $\operatorname{curl}(f\mathbf{F}) =$

(d)
$$\frac{d}{dt}\mathbf{b}(t) \cdot \mathbf{c}(t)$$

(e)
$$\frac{d}{dt} (\mathbf{b}(t) \times \mathbf{c}(t)) =$$

8. (10 points) What are the velocity, acceleration, and speed of the path $\mathbf{c}(t) = (t^2, \cos(t), \sin(t))$?

Velocity =

Acceleration=

speed=

9. (10 points) Sketch the graph of the curve parameterized by $x(t) = -2\cos(t)$ and $y(t) = 3\sin(t)$.

10. (10 points) What is the tangent plane to $x^2 + xy + yz + z^2 = 18$ at the point (1, 2, 3).

11. (10 points) What is the tangent line to $\mathbf{c}(t) = (t^2, t, t^3)$ when t = 3?

12. (10 points) Let $\mathbf{F} = \mathbf{i} + xz\mathbf{j} + \mathbf{k}xy^2$. (a) Compute curl \mathbf{F} .

 $\operatorname{curl} \mathbf{F} =$

(b) Is there a function f so that $\mathbf{F} = \nabla f$? Explain your answer? HINT: What do you recall about curl ∇f ?

13. (10 points) Let $\mathbf{c}: [a, b] \to \mathbf{R}^3$ be a curve so that $\mathbf{c}''(t) = -\|\mathbf{c}(t)\|^{-3}\mathbf{c}(t)$. Then show the vector $\mathbf{M}(t) = \mathbf{c}(t) \times \mathbf{c}'(t)$

is constant.

14. (10 points) Let R be the region between the curves $y = x^2$ and y = 2x + 3. Then compute $\iint_R x^2 y \, dx \, dy$.

15. (10 points) For the integral $\int_0^3 \int_{x^3}^{3x^2} f(x,y) \, dy \, dx$ (a) Draw the region of integration.

- (b) Reverse the order of integration in the integral.
- 16. (10 points) Let *B* be the region bounded by z = 0, z = 2 and $x^2 + y^2 = 1$. Then compute $\iiint_B \frac{z}{\sqrt{1 + x^2 + y^2}} dx dy dz$. HINT: Use cylindrical coordinates.

17. (10 points) Set up (**but do not evaluate**) for the volume bounded by $z = x^2 + 4y^2$ and z = 16.

18. (10 points) Let $\mathbf{c}(t) = (t^2, 1 + t, t^2)$ for $0 \le t \le 4$ and $\mathbf{F} = zy\mathbf{i} + xz\mathbf{i} + xy\mathbf{k}$. The compute $\int_{\mathbf{c}} \mathbf{F} \cdot d\mathbf{s}$.