Mathematics 550 Final

Name: \qquad

1. (10 points) In the figure draw and label both $\mathbf{a}-\mathbf{b}$ and $\operatorname{proj}_{\mathbf{a}} \mathbf{b}$

2. (20 points) Let $\mathbf{a}=-\mathbf{i}+2 \mathbf{j}+3 \mathbf{k}, \mathbf{b}=2 \mathbf{i}-\mathbf{j}+2 \mathbf{k}, \mathbf{v}=\mathbf{i}-2 \mathbf{j}+\mathbf{k}$. Then compute (a) the angle between \mathbf{a} and \mathbf{b}.
(b) $\mathbf{a} \times \mathbf{b}$
(c) $\operatorname{comp}_{\mathbf{a}}(\mathbf{v})$
(d) $\operatorname{proj}_{\mathbf{b}}(\mathbf{v})$
3. (10 points) Find parametric equations of the line through the points $(1,3,4)$ and $(4,-3,5)$
4. (10 points) Find the equation of the plane through the points $P=(2,1,3), Q=(-2,1,6)$ and $R=(8,-4,1)$?
5. (10 points) What is the distance of the point $(4,5,1)$ from the plane $2 x+2 y-z=7$?
6. (10 points) An object moving in the direction $\mathbf{v}=2 \mathbf{i}+3 \mathbf{j}+\mathbf{k}$ is acted on by a force given by the vector $\mathbf{F}=2 \mathbf{i}-\mathbf{j}+3 \mathbf{k}$. Express this force as a sum of a force $\mathbf{F}_{\|}$in the direction of motion and a force \mathbf{F}_{\perp} perpendicular to the direction of motion.

$$
\begin{aligned}
& \mathbf{F}_{\|}= \\
& \mathbf{F}_{\perp}= \\
&
\end{aligned}
$$

7. (25 points) Complete the following identities:
(a) $\nabla(f g)=$
(b) $\operatorname{div}(f \mathbf{F})=$
(c) $\operatorname{curl}(f \mathbf{F})=$
(d) $\frac{d}{d t} \mathbf{b}(t) \cdot \mathbf{c}(t)$
(e) $\frac{d}{d t}(\mathbf{b}(t) \times \mathbf{c}(t))=$
8. (10 points) What are the velocity, acceleration, and speed of the path $\mathbf{c}(t)=\left(t^{2}, \cos (t), \sin (t)\right)$?
Velocity =
\qquad

Acceleration= \qquad
speed $=$ \qquad
9. (10 points) Sketch the graph of the curve parameterized by $x(t)=-2 \cos (t)$ and $y(t)=3 \sin (t)$.
10. (10 points) What is the tangent plane to $x^{2}+x y+y z+z^{2}=18$ at the point $(1,2,3)$.
11. (10 points) What is the tangent line to $\mathbf{c}(t)=\left(t^{2}, t, t^{3}\right)$ when $t=3$?
12. (10 points) Let $\mathbf{F}=\mathbf{i}+x z \mathbf{j}+\mathbf{k} x y^{2}$.
(a) Compute curl \mathbf{F}.
$\operatorname{curl} \mathbf{F}=$ \qquad
(b) Is there a function f so that $\mathbf{F}=\nabla f$? Explain your answer? Hint: What do you recall about curl ∇f ?
13. (10 points) Let $\mathbf{c}:[a, b] \rightarrow \mathbf{R}^{3}$ be a curve so that $\mathbf{c}^{\prime \prime}(t)=-\|\mathbf{c}(t)\|^{-3} \mathbf{c}(t)$. Then show the vector $\mathbf{M}(t)=\mathbf{c}(t) \times \mathbf{c}^{\prime}(t)$
is constant.
14. (10 points) Let R be the region between the curves $y=x^{2}$ and $y=2 x+3$. Then compute $\iint_{R} x^{2} y d x d y$.
15. (10 points) For the integral $\int_{0}^{3} \int_{x^{3}}^{3 x^{2}} f(x, y) d y d x$
(a) Draw the region of integration.
(b) Reverse the order of integration in the integral.
16. (10 points) Let B be the region bounded by $z=0, z=2$ and $x^{2}+y^{2}=1$. Then compute $\iiint_{B} \frac{z}{\sqrt{1+x^{2}+y^{2}}} d x d y d z$. Hint: Use cylindrical coordinates.
17. (10 points) Set up (but do not evaluate) for the volume bounded by $z=x^{2}++4 y^{2}$ and $z=16$.
18. (10 points) Let $\mathbf{c}(t)=\left(t^{2}, 1+t, t^{2}\right)$ for $0 \leq t \leq 4$ and $\mathbf{F}=z y \mathbf{i}+x z \mathbf{i}+x y \mathbf{k}$. The compute $\int_{\mathbf{c}} \mathbf{F} \cdot d \mathbf{s}$.

