Mathematics 527 Final

Show your work to get credit. An answer with no work will not get credit.
(1) (20 points) Define the following:
(a) $x_{k} \rightarrow$ r linearly.
(b) $x_{k} \rightarrow r$ quadratically.
(c) r is a fixed point of $g(x)$.
(d) The divided difference $f\left[x_{0}, x_{1}, \ldots, x_{n}\right]$.
(e) The cardinal functions for the points $x_{0}, x_{1}, \ldots, x_{n}$.
(2) (20 points) State the following:
(a) State the n-th order Taylor theorem about x and with remainder for $f(x+h)$.
(b) Newton's method for solving the equations $f(x)=0$.
(c) The trapezoid rule, with error term, for approximating $\int_{a}^{b} f(x) d x$.
(d) The error formula for approximating $f(x)$ by the polynomial of degree $\neq n$ that interpolates f at the points x_{0}, \ldots, x_{n}.
(3) (20 points) Let $f(x)$ be defined by

$$
f(x)=\int_{0}^{x} \sin \left(t^{2}\right) d t
$$

(a) Find the Taylor's expansion of $f(x)$ about the point $x=0$.
(b) How many terms of this series are needed to compute $f(.1)$ to 10 decimal places?
(4) (15 points) Draw a graph $y=f(x)$ of some smooth function $f(x)$ and choice of initial point x_{0} so that Newton's method for solving $f(x)=0$ fails. (The equation $f(x)=0$ should have at least one solution.)
(5) (15 points) If we have a sequence x_{k} from an application of Newton's method to find the root of r of $f(x)=0$, so that the errors $e_{k}=r-x_{k}$ satisfy $\left|e_{k+1}\right| \leq(.01) e_{k}^{2}$ and the initial error $e_{0} \leq 2$, then how many steps are needed to commute r accurate to 50 decimal places?

Number of steps $=$
(6) (15 points) A interpolating polynomial of degree 20 is used to approximate e^{-x} on the interval $[0,2]$ at 21 equally spaced nodes. How accurate will this be?
(7) (15 points) Determine the error term in the approximation

$$
f^{\prime}(x) \approx \frac{8[f(x+h)-f(x-h)]-[f(x+h)-f(x-h)]}{12 h}
$$

(8) (15 points) Let $\phi(h)$ be a functions so that

$$
\phi(h)=L+a_{4} h^{4}+a_{6} h^{6}+a_{8} h^{8}+\cdots
$$

Then find a function ψ so that

$$
\psi(h)=L+b_{6} h^{8}+b_{8} h^{8}+\cdots
$$ for some constants b_{8} and b_{10} and give the relationship between a_{6}, a_{8} and b_{6} and b_{8}.

(9) (15 points) How large must the even integer n be chosen in the composite Simpson's rule to insure that the error in computing $\int_{0}^{1} \sin (x) d x$ is less than .00001 ?

