Math/Stat 511 Test \#2
Name: Answer Key
Show your work! Answers that do not have a justification will receive no credit.

Grades on the Second Exam.

Here is the information on the second test. 18 people took the exam. The high score was a 100 and three were 99 's. The two low scores were 29 and 34 The mean was $\mu=78.05$ with a standard deviation of $\sigma=$ 22.17. The median was 84.00 The break down in the grades is in the table.

Grade	Range	Number	Percent
A	$90-100$	7	38.89%
B	$80-89$	3	16.67%
C	$70-79$	2	11.11%
D	$60-69$	3	16.67%
F	$0-59$	3	16.67%

1. (10 Points) Corn seeds from supplier A have a 90% germination rate and those from supplier B have a 80% germination rate. A package of corn seeds has 70% of its seeds from supplier A and 30% from supplier B. If a seed from this package is planted and germinates, then what is the probability that it came from supplier B?

Solution: This can be done with Bayes' Law, but it is easier to use a tree diagram.

Therefore

$$
\begin{aligned}
P(B \mid \text { Germinates }) & =\frac{P(\mathrm{~A} \text { and Germinates })}{P(\text { Germinates })} \\
& =\frac{(.3)(.8)}{(.7)(.9)+(.3)(.8)} \\
& =\frac{.24}{.87} \approx .275862
\end{aligned}
$$

Remark: The answers $.87=P$ (Germinates) and $.24=P(B \mid$ Germinates) both received 3 out of the 10 points.
2. (10 Points) Let X be a random variable so that the the p.d.f. of X is given by

$$
f(x)=c x, \quad x=2,3,4
$$

for some constant c.
(a) Find c

Solution: As the sum of a p.d.f is 1 we have

$$
1=f(2)+f(3)+f(4)=c \cdot 2+c \cdot 3+c \cdot 4=9 c
$$

which implies $c=\underline{1 / 9}$.
(b) Depict the p.d.f. as a bar graph.

3. (5 Points) In a state lottery a two digit number is chosen at random. If player bets $\$ 1$ on a particular number, then he or she wins $\$ 75$, otherwise he or she loses $\$ 1$. What is the expected payoff for this game?

Solution: Let X be the payoff. Then X takes on the two values $X=-1 \$ 1$ and $X=\$ 75$. The p.d.f. is $f(-1)=.99$ and $f(75)=.01$. Therefore the expected payoff is

$$
E(X)=(-1) f(-1)+75 f(75)=(-\$ 1)(.99)+\$ 75(.01)=\underline{-\$.24} .
$$

Remark: As there was a little ambiguity in the statement the answer where if was assume that X takes on the values $X=-1$ and $X=74$ with $f(-1)=.99$ and $f(74)=.01$

$$
E(X)=(-1) f(-1)+74 f(74)=(-\$ 1)(.99)+\$ 74(.01)=\underline{-\$.25} .
$$

also got full credit.
4. (10 Points) Let X be a discrete random variable with p.d.f.

$$
f(x)=\frac{5-x}{10}, \quad x=1,2,3,4 .
$$

Find the mean and variance of X.
Solution: It is a little easier to see what is going on if we make a table for the p.d.f.

x	1	2	3	4
$f(x)$.4	.3	.2	.1

$$
\begin{aligned}
& \text { mean }=\mu=E(X)=1 f(1)+2 f(2)+3 f(3)=4 f(4)=1(.4)+2(.3)+3(.2)+4(.1)=\underline{2.0} \\
& \qquad \begin{aligned}
\text { variance } & =\sigma^{2}=E\left[(X-\mu)^{2}\right]=E\left[(X-2)^{2}\right] \\
& =(1-2)^{2} f(1)+(2-2)^{2} f(2)+(3-2)^{2} f(3)+(4-3)^{2} f(4) \\
& =1(.4)+0+1(.2)+4(.1) \\
& =\underline{1}
\end{aligned}
\end{aligned}
$$

5. (15 Points) Let X be the value of a number chosen at random from the set $\{10,11, \ldots, 20\}$ with all numbers equally likely.
(a) What is the p.d.f. of X ?

Solution: This is the discrete uniform distribution on $\{10,11, \ldots, 20\}$ and there are 11 points in this set so the p.d.f. is

$$
f(x)=\frac{1}{11} \quad \text { for } \quad x=10,11, \ldots, 20
$$

Remark: Forgetting to put $x=10,11, \ldots, 20$ lose one point.
(b) What is $P(14 \leq X \leq 18)$?

Solution: This if

$$
P(14 \leq X \leq 18)=f(14)+f(15)+f(16)+f(17)+f(18)=\text { frac } 511
$$

(c) What is the expected value of X ?

Solution: From the formula for the mean of a discrete uniform

$$
E(X)=\frac{a+b}{2}=\frac{10+20}{2}=15 .
$$

(d) What is the variance of X ?

$$
V(X)=
$$

\qquad then

$$
V(X)=\frac{m^{2}-1}{12}=\frac{11^{2}-1}{12}=\frac{121-1}{12}=10 .
$$

6. (10 Points) A bag contains 20 pieces of candy of which 5 are cherry and 15 are grape flavored. If 6 pieces of candy are chosen at random from the bag (without replacement), then what is the probability that exactly 3 are cherry?

Solution: This is a hypergeometric distribution and the probability is

$$
\frac{\binom{5}{3}}{\binom{15}{3}}\binom{20}{6} \approx .117438
$$

Remark: Not changing to a decimal lost 2 points. Thinking it was a binomial or exponential distribution lost all ten points.
7. (20 Points) In a certain state 15% of people do not have auto insurance. A random sample of 10 people is made and the number, X, of people who do not have auto insurance is recorded.
(a) What is the distribution of X.

Solution: This is a binomial distortion $b(10, .15)$. (That is $n=10$ and $p=.15$)
(b) What is the expected number of people in the sample that do not have auto insurance.

Solution: This is the mean of X which is $E(X)=n p=10(.15)=\underline{1.5}$.
(c) Compute the following probabilities.

Solution: Use the table for the binomial distribution.
(i) $P(X \leq 3)=.9500$
(ii) $P(X \geq 4)=1-P(X \leq 3)=1-.9500=.0500$
(iii) $P(X=2)=P(X \leq 2)-P(X \leq 1)=.8202-.5453=.2759$
8. (15 Points) A student takes a multiple choice test where the probability of his getting a right answer by guessing is $p=.2$. Assume that he guesses on all the questions and that the guesses are independent
(a) What is the probability that his fist correct answer is on question 6 ?

Solution: This is an exponential distribution with $p=.2$. Thus

$$
P(\text { first correct answer on question } 6)=(.8)^{5}(.2) \approx \underline{.065536}
$$

(b) What is the probability that his third correct answer is on question 12.

Solution: This is a negative binomial distribution with $p=.2$ and $r=3$. Therefore

$$
P(\text { third correct answer is on question } 12)=\binom{11}{2}(.8)^{9}(.2)^{3} \approx \underline{.0590558}
$$

(c) What is the probability he gets the first 5 questions wrong?

Solution: This is just $(.8)^{5}=.32726$
(d) Let X be the number of the question on which he gets his fourth correct answer. Then what are the mean and variance of X.
Solution: Here X has the negative binomial distribution with $r=4$ and $p=.2$. From the formula for the mean and variance

$$
E(X)=\frac{r}{p}=\frac{4}{.2}=\underline{20}
$$

and

$$
V(X)=\frac{r q}{p^{2}}=\frac{4(.8)}{(.2)^{2}}=\underline{80}
$$

9. (5 Points) Let X be a random variable with expected value $E(X)=2$ and variance $\sigma^{2}=$ $V(X)=3$. Then compute $E[X(4-X)]$

Solution: We know that $\mu=E(X)=2$. Therefore $3=V(X)=E\left(X^{2}\right)-\mu^{2}$ implies $E\left(X^{2}\right)=V(X)+\mu^{2}=\sigma^{2}+\mu^{2}=3+2^{2}=7$. Whence

$$
E[X(4-X)]=E\left(4 X-X^{2}\right)=4 E(X)-E\left(X^{2}\right)=4(2)-7=\underline{1} .
$$

