Math/Stat 511 Final

Name:
Show your work! Answers that do not have a justification will receive no credit.

1. (15 Points)
(a) Define what it means for events A_{1}, \ldots, A_{k} to be mutually exclusive.
(b) Define what if means for events A, B, and C to be independent.
(c) Let A and B be events with $P(B) \neq 0$. Then what is the definition of the conditional probability $P(A \mid B)$?
(d) Complete the following: Probability is a set function that assigns to each event A in the sample space S a number $P(A)$, called the probability of the event A, such that the following properties are satisfied:
(e) Let X be a discrete random variable with space R. Then define the probability density function (p.d.f.) of X.
(f) It X is a discrete random variable with space R and p.d.f. $f(x)$ then define the mathematical expectation $E(u(X))$ of $u(X)$.
2. (5 Points) If $S=B_{1} \cup B_{2}$ with $B_{1} \cap B_{2}=\varnothing$ and A is an event with $P(A) \neq 0$ then give the derivation of Bayes' Law for $P\left(B_{2} \mid A\right)$. (It is fine if you do this in terms of a tree diagram.)
3. (10 Points) Let A and B be events so that $P(A)=.5, P(B)=.7, P(A \cup B)=.8$. Then compute
(a) $P\left(A^{\prime}\right)$
$P\left(A^{\prime}\right)=$ \qquad
(b) $P(A \cap B)$

$$
P(A \cap B)=
$$

\qquad
(c) $P\left(A \cup B^{\prime}\right)$

$$
P\left(A \cup B^{\prime}\right)=
$$

\qquad
4. (5 Points) Assume the events A and B are independent and that $P(A)=.5$ and $P(B)=.2$. Then what is $P(A \cup B)$?

$$
P(A \cup B)=
$$

\qquad
5. (5 Points) Alice and Bill play a checker tournament where the first person to win 5 games wins the tournament. How many different ways can Alice win the tournament in exactly 8 games?
6. (10 Points) Let A_{1} and A_{2} be the events that that a person is left or right handed, respectively. Let B_{1} and B_{2} be the events that a person is left eye dominant or right eye dominant, respectively. A survey in one statistics class yielded the following data:

	B_{1}	B_{2}	Total
A_{1}	20	15	35
A_{2}	30	25	55
Total	50	40	90

Compute the following:
(a) $P\left(A_{2}\right)$
$P\left(A_{2}\right)=$ \qquad
(b) $P\left(B_{2} \mid A_{1}\right)$

$$
P\left(B_{2} \mid A_{1}\right)=
$$

\qquad
(c) The probability that a member of the class is left handed given that they are right eye dominant.
7. (10 Points) Assuming that it is equally likely that a person be born on any of the 7 days of the week, then what is the probability that of 7 people chosen at random no two were born in the same day of the week?
8. (10 Points) Two cards are drawn at random without replacement from a standard deck of 52 playing cards. Then compute
(a) The probability that one is a club and the other is a heart. \qquad
(b) The first one is a King and the second one is Black.
9. (10 Points) Students coming form high school district A have a 70% chance of passing freshman calculus, while students coming from high school district B have a 80% chance of passing the class. If a freshman calculus class has 25% of its students from district A and the remaining 75% from district B, then what is the probability that a student who passes the class can from district A ?
10. (10 Points) Let X be a discrete random variable with p.d.f.

$$
f(x)=\frac{3+x}{6}, \quad x=-2,-1,0
$$

Find the mean and variance of X.

$$
\begin{aligned}
& \mu= \\
& \sigma^{2}= \\
&
\end{aligned}
$$

11. (5 Points) A box of 12 donuts has 8 plain and 4 chocolate donuts. If 6 donuts are choosen at random then what is the probablity that exactly 2 are chocloate?
12. (10 Points) If 20% of the students at U.S.C. are left handed, let X be the number of left handed people out of a random sample of 20 students.
(a) What is the expected number of people in the sample that are left handed.
(b) Compute $P(3 \leq X \leq 6)$
$P(3 \leq X \leq 6)=$ \qquad
13. (20 points) Let X be a random variable with the given function $M(t)$ as moment generating function. Then fill in the required information about X. (a) $M(t)=\left(.7+.3 e^{t}\right)^{5}$
(i) What is the distribution of X ?
(ii) What is the pdf of X ?
(iii) What is $E(X)$?
(iv) What is $P(X=3)$?
(b) $M(t)=e^{-6 t+24 t^{2}}$
(i) What is the distribution of X ?
(ii) What is the pdf of X ?
(iii) What is the expect value of X ?
(iv) What is the variance of X ?
\qquad

$$
\mu=
$$

$$
\sigma^{2}=
$$

\qquad
(c) $M(t)=.1 e^{-2 t}+.7 e^{t}+.2 e^{3 t}$.
(i) What is the pdf of X ?
(ii) What is $P(X=6)$?

$$
P(X=6)=
$$

\qquad
14. (10 points) Let X be a random variable of continuous type with pdf

$$
f(x)= \begin{cases}c x(1-x) & 0 \leq x \leq 1 \\ 0 & \text { elsewhere }\end{cases}
$$

(a) Find the value of

$$
c=
$$

\qquad
(b) What is the expect value of X ? \qquad
(c) What is the distribution function of X ?
15. (5 points) Let X have a normal distribution with mean $\mu=3$ and variance $\sigma^{2}=4$. Then find the following probabilities. Then find the probablity $P(1 \leq X \leq 7)$

$$
P(1 \leq X \leq 7)=
$$

\qquad
16. (10 Points) Let X have the p.d.f. $f(x)=5 x^{4}$ for $0 \leq x \leq 1$. Then find the p.d.f. of $Y=X^{1 / 3}$.

