Key Name:

You must show your work to get full credit.

For the Leslie matrix from the last quiz:

$$L = \begin{bmatrix} 0.0 & 6.2 & 39.0 \\ 0.035 & 0.0 & 0.0 \\ 0.0 & 0.62 & 0.0 \end{bmatrix}$$

let use find the per capita growth rate. Assume that

$$\vec{n}(0) = \begin{bmatrix} n_1 \\ n_2 \\ n_3 \end{bmatrix}$$

is stable age distribution. That is

$$\vec{n}(1) = \lambda \vec{n}(0)$$
 that is $\vec{n}(1) = \begin{bmatrix} \lambda n_1 \\ \lambda n_2 \\ \lambda n_3 \end{bmatrix}$

Draw the loop diagram and use it to get anther formula for $\vec{n}(1)$

$$\vec{n}(1) = \begin{bmatrix} 6.2n_2 + 39n_3 \\ 0.35n_1 \\ .62n_2 \end{bmatrix}$$

Comparing these two formulas for $\vec{n}(1)$ gives three equations. What are they?

Equation 1
$$\frac{7}{1} = \frac{6.2}{1} = \frac{6.2} = \frac{6.2}{1} = \frac{6.2}{1} = \frac{6.2}{1} = \frac{6.2}{1} = \frac{6.2}{1}$$

equation.) -divide 4x7 Equation for λ = $\frac{.217}{22} + \frac{.8463}{23}$

Solve this using your calculator to get λ and the discrete growth rate $r = \lambda - 1$

$$r = 0222$$

Finally give the stable age distribution:

$$N_2 = \frac{-035}{2} = .03424$$
 Percent in stage 1 $\frac{94.2\%}{3.1\%}$
 $N_3 = \frac{(.62)(.035)}{7.2} = .02077$ Percent in stage 2 $\frac{3.1\%}{2.0\%}$
Percent in stage 3 $\frac{2.0\%}{0}$