Mathematics 172

Quiz # 22

Name:

You must show your work to get full credit.

A plant with a three stage growth cycle has Leslie matrix

$$L = \begin{bmatrix} 0.0 & 6.2 & 39.0 \\ 0.35 & 0.0 & 0.0 \\ 0.0 & 0.62 & 0.0 \end{bmatrix}.$$

This plants live on an island and the initial age distribution is

$$\vec{n}(0) = \begin{bmatrix} 210 & 6 & 4 \end{bmatrix}$$

We wish to compute the discrete exponential grow rate λ , the per capita growth rate $r = \lambda - 1$, and the stable age distribution. To do this compute

1.

$$\vec{n}(60) = \begin{bmatrix} 7/9.6 \\ 24.64 \\ 14.95 \end{bmatrix}$$
 and $\vec{n}(61) = \begin{bmatrix} 735.64 \\ 25.18 \\ 15.28 \end{bmatrix}$

2. If we have reached the stable age distribution we should have

$$\vec{n}(61) = \lambda \vec{n}(60)$$

this gives three equations for λ . What are the three values we get for lambda?

$$\lambda = 1.022$$
 = $\frac{735.64}{719.6}$
 $\lambda = 1.022$ = $\frac{25.18}{24.64}$
 $\lambda = 1.022$ = $\frac{15.28}{15.28}$

These agree to three decemial places, so we can consider that we have reached 14.45 the stable age distribution.

3. What is the stable age distribution?

3. What is the stable age distribution?

Tuged
$$\sqrt{7}(60)$$

Total = $719.6 + 24.64$

Percent in stage 1 94.8%

Percent in stage 2 3.25%

Percent in stage 2 3.25%

Percent in stage 3 1.97%

Percent in stage 3 1.97%