Mathematics 172

Quiz # 11

Name: Key

You must show your work to get full credit.

A population of snails is growing logistically in an aquarium with an intrinsic growth rate of r = .13 (snails/week)/snail. The carrying capacity of the aquarium is K = 60. Let N(t) be the number of snails after t weeks.

1. Write down the rate equation for N(t).

Rate equation is: $\frac{dN}{dt} = .13N(1 - \frac{N}{60})$

2. If N(0) = 45 estimate the number of snails in

$$N'(0) = .13(45)(1 - \frac{45}{60})$$

One week: $N(1) \approx$ 46.4625

 $\mathcal{N}(1)\approx\mathcal{N}(0)+1\mathcal{N}'(0)$ One half week: $N(.5)\approx 45.76321$

= 45 + 1.4625 = 46.4625

N(i5) = 45 + (.5) (1.46425) = 45.7321

3. A pair of dwarf gourami (a type of fish from South Asia). They eat snails at a rate of 10% of the current population size.

What is the new rate equation for N? $\frac{dN}{dt} = .13N \left(1 - \frac{N}{60}\right) - .1N$

What is the new carrying capacity?

Find the new egon points of = .13N (1- 10) -. IN = 0

$$N(.13(1-60)...)$$
 $N=0$
 $13(1-60)...$
 $13=.134=.00$
 $13=.134=.03$
 $60=13.85$