Mathematics 172 Homework

1. A agriculturist is feeding a pond full of tilapia by growing duckweed in the pond. Let $A(t)$ be the number of kg of duckweed in the pond t weeks. Because of the feeding of the fish the intrinsic growth rate of the duckweed of the duckweed is $r=-.15$.
(a) What is the rate equation satisfied by $A(0)$ if no duckweed is stocked in the pond.

Answer: $\frac{d A}{d t}=-.15 A$.
(b) What are the units of r ? Answer: $(\mathrm{kg} /$ week $) / \mathrm{kg}$.
(c) The agriculturist stocks starts to stock the pond with duckweed at a constant rate of $5 \mathrm{~kg} /$ week. What is the new rate equation satisfied by $A(t)$?

Answer: $\frac{d A}{d t}=-.15 A+5$.
(d) What is the equilibrium solution to this equation.

Answer: $A=5 / .15=33.33$
(e) Draw graphs of the solutions to the rate equation with the initial values $A(0)=25, A(0)=30, A(0)=40$.
(f) For the solution you graphed the last part, estimate $A(52)$.

Answer: $A(52) \approx 33.33$ for all these solution.
(g) Find the exact solution with initial value $A(0)=25$. What is is the exact value of $A(52)$. What is the value of $A(20)$?

Answer: $A(t)=33.33-8.33 e^{-.15 t}, A(52)=33.327$, and $A(20)=32.915$
2. Due to fishing pressure the number of bass in a lake has a negative intrinsic growth rate of $r=-.2$. Let the number of bass in the lake be $N(t)$ where t is in years.
(a) What is the rate equation satisfied by $N(t)$?

Answer: $\frac{d N}{d t}=-.2 N$.
(b) What are the units of r ? Answer: (fish/year)/fish.
(c) DNR (Department of Natural Resources) wants the lake to have a stable population of 40,000 bass. At what rate should they stock the lake?

Answer: Let S fish/year be the rate at which the lake is stocked. Then the rate equation satisfied by N becomes

$$
\frac{d N}{d t}=-.2 N+S
$$

The equilibrium solution for this equation is found by solving $-.2 N+S$ for N. This gives

$$
N=\frac{S}{.2} .
$$

This will be the stable population size of the lake. We want this to be

$$
\frac{S}{.2}=40,000
$$

which gives

$$
S=(.2)(40,000)=8,000 \text { fish } / \text { year }
$$

as the required stocking rate.

