Mathematics 172 Homework

1. Consider the the rate equation

$$
\frac{d N}{d t}=.13 N(n-15)(n-35)
$$

(a) What are the equilibrium solutions. That is the solutions that are constants.

Answer: Set $\frac{d N}{d t}=.13 N(n-15)(n-35)=0$ and get $N=0, N=15$ and $N=35$ as the equilibrium solution.
(b) Sketch the graphs of the solutions with the following initial values $N(0)=2.5, N(0)=10, N(0)=20, N(0)=32.5, N(0)=37.5$

Answer: The equilibrium solutions are in green and the other required solutions are in red.

2. This time consider the rate equation

$$
\frac{d P}{d t}=-2(P-10) .
$$

(a) Find the equilibrium solution. Answer: $P=10$.
(b) Graph the equilibrium solution along with the solutions with initial values $P(0)=5$ and $P(0)=15$

(c) The figure makes it look like the solution could be exponential decay towards $P=10$. So see if this is the case do a change of variable,

$$
y=P-10 .
$$

Show that y satisfies the rate equation

$$
\frac{d y}{d t}=-2 y .
$$

Hint: $\frac{d y}{d t}=\frac{d P}{d t}$ as the derivative of 10 is zero.
(d) Show that y is given by

$$
y(0)=y_{0} e^{-2 t} .
$$

(e) So if we have the solution $P(t)$ of the original equation with $P(0)=5$, then $y(0)=P(0)-10=5-10=-5$. Therefore

$$
y(0)=y_{0} e^{-2 t}=-5 e^{-2 t} .
$$

But $y=P-10$ is implies $P=y+10$. Therefore

$$
P(t)=10-5 e^{-2 t} .
$$

Use the same change of variable $y=P-10$ to show that the solution to $\frac{d P}{d t}=-2(P-10)$ and $P(0)=10$ is

$$
P(t)=5+5 e^{-2 t}
$$

3. Use the ideas of the last problem to find the solutions of

$$
\frac{d N}{d t}=.5(N-50)
$$

with initial conditions $P(0)=40$ and $P(0)=65$. Answer: This time the change of variable is $y=N-50$ and the equation for y is $y^{\prime}=.5 y$.

Answer: The solution for $N(0)=40$ is $N(t)=50-10 e^{.5 t}$ and the solution for $N(0)=65$ is $N(t)=50+15 e^{.5 t}$.

