Mathematics 172 Homework

1. Duckweed (a small floating plant) is growing in a pond. As some point a chemical starts to dump toxins into the pond. After two weeks only 90% of the duckweed is left. Assume a growth rate of that satisfies the rate equation $N^{\prime}=r N$,
(a) Find the per capita growth rate r.

Answer: The growth is exponential, $N=N_{0} e^{r t}$. After 2 weeks 90% is left, so $N(2)=N_{0} e^{2 r}=.9 N_{0}$. This gives the equation $e^{2 r}=.9$, whcih we can solve for r to get $r=\ln (.9) / 2=-0.05268$
(b) Find a formula fraction of the duckweed that is left t week after the dumping starts.

Answer: Using our value of r we have $N=N_{0} e^{-0.05268 t}$. So the fraction of the original amount is $e^{-0.05268 t}$.
(c) How long until only 10% of the duckweed is left.

Answer: We need to solve $e^{-0.05268 t}=.1$. This gives $t=\ln (.1) /(-0.05268)=$ 43.71 weeks.
2. One hundred guppies (a small fast breeding fish) are introduced to an abandoned swimming pool to control mosquitoes. A month and a half later there are 750 guppies in the pool. Without constraints these fish grow according to the rate equation $N^{\prime}=r N$ where N is the population size.
(a) Find the per capita growth rate r.

Answer: If $N(t)$ is the number of guppies after t months, then $N=$ $N_{0} e^{r t}=100 e^{r t}=100 e^{r t}$. Then $N(1.5)=100 e^{1.5 r}=750$. This leads to $r=\ln (750 / 100) / 1.5=1.343$.
(b) Find a formula for the number of guppies in the pool t months after the original one hundred are released.

Answer: $N(t)=100 e^{1.343 t}$
(c) How long until there are one hundred thousand guppies in the pond? Answer: Solve $N(t)=100 e^{1.343 t}=100000$, to get $t=\ln (100000 / 100) / 1.343=$ 5.143 months.

