Mathematics 172 Homework

1. Here are problems for practicing derivatives.
(a) $y=4 e^{2 t}$.

Answer: $\frac{d y}{d t}=2 \cdot 4 e^{2 t}=8 e^{2 t}$.
(b) $N(t)=5 e^{-2.2 t}$.

Answer: $N^{\prime}(t)=-2.2 \cdot 5 e^{-2.2 t}=-11 e^{-2.2 t}$.
(c) $P=375 e^{.0142 t}$.

Answer: $\frac{d P}{d t}=.0142(375) e^{.0142 t}=5.325 e^{.0142 t}$.
2. Here are some derivative problems that have constants in them.
(a) $P=P_{0} e^{2 t}$, with P_{0} a constant.

Answer: $P^{\prime}=2 P_{0} e^{2 t}=2 P$.
(b) $N=N_{0} e^{-.4 t}$, with N_{0} a constant.

Answer: $\frac{d N}{d t}=-.4 N_{0} e^{-.4 t}=-.4 N$.
(c) $A=A_{0} e^{067 t}$.

Answer: $\frac{d A}{d t}=.067 A_{0} e^{.067 t}=.067 A$.
(d) $N=N_{0} e^{r t}$.

Answer: $\frac{d N}{d t}=r N_{0} e^{r t}=r N$.
At this point you have likely seen a pattern. That is if $y=y_{0} e^{r t}$, then $y^{\prime}=r y$. Or in different notation $\frac{d t}{d t}=r y$. This has a converse.

Basic fact about exponentials. If $y=y(t)$ is a function of t, then

$$
\frac{d y}{d t}=r y \quad \text { implies } \quad y=y_{0} e^{r t} .
$$

3. Here are some problems to practice using this fact.
(a) If $\frac{d y}{d t}=5 y$ and $y(0)=9$, then find $y(t)$.

Answer: Here $y_{0}=9$ thus $y(t)=9 e^{5 t}$.
(b) If $\frac{d P}{d t}=.15 P$, and $P(0)=500$, find $P(t)$.

Answer: $P(t)=500 e^{.15 t}$.
(c) If $P^{\prime}(t)=-.25 P$ and $P(0)=100$, find $P(t)$.

Answer: $P(t)=100 e^{-.25 t}$.
(d) If $A^{\prime}(t)=r A(t), A(0)=10, A(4)=25$, and r is a constant, then find a formula for $A(t)$ and the value $A(25)$.

Answer: By the Basic Fact, we have that $A(t)=10 e^{r t}$. Then

$$
A(4)=10 e^{5 r}=25
$$

and so as we have done before this leads to

$$
r=\frac{25 / 10}{4}=.22907
$$

Thus

$$
A(t)=10 e^{.22907 t}
$$

and

$$
A(25)=10 e^{.22907(25)}=3069.69
$$

(e) If $P^{\prime}(t)=r P(t), P(0)=78, P(2)=83$ and r is constant. Then find a formula for $P(t)$, the value of $P(10)$ and how long it takes for $P(t)$ to reach 1000.

Answer: $P(t)=78 e^{.03107 t}, P(10)=106.4$, and the time it takes to get to 1000 is $t=82.106$

