Mathematics 172 Homework

1. Here are problems for practicing derivatives. (a) $y = 4e^{2t}$. Answer: $\frac{dy}{dt} = 2 \cdot 4e^{2t} = 8e^{2t}$. (b) $N(t) = 5e^{-2.2t}$. Answer: $N'(t) = -2.2 \cdot 5e^{-2.2t} = -11e^{-2.2t}$. (c) $P = 375e^{0142t}$. Answer: $\frac{dP}{dt} = .0142(375)e^{.0142t} = 5.325e^{.0142t}$. 2. Here are some derivative problems that have constants in them. (a) $P = P_0e^{2t}$, with P_0 a constant. Answer: $P' = 2P_0e^{2t} = 2P$. (b) $N = N_0e^{-.4t}$, with N_0 a constant. Answer: $\frac{dN}{dt} = -.4N_0e^{-.4t} = -.4N$. (c) $A = A_0e^{.067t}$. Answer: $\frac{dA}{dt} = .067A_0e^{.067t} = .067A$. (d) $N = N_0e^{rt}$. Answer: $\frac{dM}{dt} = rN_0e^{rt} = rN$. At this point you have likely seen a pattern. That is if $y = y_0e^{rt}$, then y' = ry. Or in different notation $\frac{dt}{dt} = ry$. This has a converse.

Basic fact about exponentials. If y = y(t) is a function of t, then

$$\frac{dy}{dt} = ry$$
 implies $y = y_0 e^{rt}$.

3. Here are some problems to practice using this fact.

(a) If $\frac{dy}{dt} = 5y$ and y(0) = 9, then find y(t). Answer: Here $y_0 = 9$ thus $y(t) = 9e^{5t}$. (b) If $\frac{dP}{dt} = .15P$, and P(0) = 500, find P(t). Answer: $P(t) = 500e^{.15t}$. (c) If P'(t) = -.25P and P(0) = 100, find P(t). Answer: $P(t) = 100e^{-.25t}$. (d) If A'(t) = rA(t), A(0) = 10, A(4) = 25, and r is a constant, then find a formula for A(t) and the value A(25).

Answer: By the Basic Fact, we have that $A(t) = 10e^{rt}$. Then

$$A(4) = 10e^{5r} = 25$$

and so as we have done before this leads to

$$r = \frac{25/10}{4} = .22907$$

Thus

$$A(t) = 10e^{.22907t}$$

and

$$A(25) = 10e^{.22907(25)} = 3069.69$$

(e) If P'(t) = rP(t), P(0) = 78, P(2) = 83 and r is constant. Then find a formula for P(t), the value of P(10) and how long it takes for P(t) to reach 1000.

Answer: $P(t) = 78e^{.03107t}$, P(10) = 106.4, and the time it takes to get to 1000 is t = 82.106