Mathematics 172 Homework

1. (Verification of Bret's method.) Show that

$$
y=-\frac{c}{r}+\left(y_{0}+\frac{c}{r}\right) e^{r t}
$$

is a solution to the intinal value problem

$$
y^{\prime}=r y+c, \quad y(0)=y_{0}
$$

where r and c are constants.
2. The special case of this that is relevant to our current topic is that we have a meta population of organism living in a collection of patches with the probability of a populated patch going extent being p_{e} and the probability of an unpopulated patch being colonized is p_{i}, then the fraction, f, of the patches that are populated satisfies

$$
f^{\prime}=p_{i}(1-f)-p_{e} f=-\left(p_{i}+p_{e}\right) f+p_{i} .
$$

Therefore Bret's method gives us that the solution is

$$
f(t)=\frac{p_{i}}{p_{i}+p_{e}}+\left(f(0)-\frac{p_{i}}{p_{i}+p_{e}}\right) e^{-\left(p_{i}+p_{e}\right) t} .
$$

If we let

$$
\widehat{f}=\frac{p_{i}}{p_{i}+p_{e}}
$$

be the equilibrium solution, this solution can also be written as

$$
f(t)=\widehat{f}+(f(0)-\widehat{f}) e^{-\left(p_{i}+p_{e}\right) t}
$$

Use this to solve the following
(a) If $p_{e}=.5$ and $p_{i}=.9$, then what is the fraction of patches that are populated in the long run? Answer: $\widehat{f}=.9 /(.5+.9)=.642857$ What is the solution with $f(0)=.25$? Answer: $f(t)=.642857+(.25-.642857) e^{-1.4 t}=$ $.642857-0.392857 e^{-1.4 t}$ For this solution what is $f(10)$? Answer: $f(10)=$ 0.642857
(b) If $p_{e}=.8$ and $p_{i}=.4$, then what is the fraction of patches that are populated in the long run? Answer: $\widehat{f}=.4 /(.4+.8)=.33333$ What is the solution with $f(0)=.5$? Answer: $f(t)=.33333+(.5-.33333) e^{-1.2 t}=$ $.33333-.16667 e^{-1.4 t}$ For this solution what is $f(3)$? Answer: $f(10)=$ 0.337887

Here is some practice on Euler's method. Recall that this says that for a system

$$
\begin{aligned}
& \frac{d x}{d t}=f(x, y) \\
& \frac{d y}{d t}=g(x, y)
\end{aligned}
$$

that if we choose a small Δt and set

$$
t_{k}=k \Delta t, \quad x_{0}=x(0), \quad y_{0}=y(0)
$$

and

$$
\begin{aligned}
x_{k+1} & =x_{k}+f\left(x_{k}, y_{k}\right) \\
y_{k+1} & =y_{h}+g\left(x_{k}, y_{k}\right)
\end{aligned}
$$

Then we have the approximations

$$
\begin{aligned}
& x\left(t_{k}\right) \approx x_{k} \\
& y\left(t_{k}\right) \approx y_{k}
\end{aligned}
$$

3. Using Euler's method and four steps of size $\Delta t=.5$ approximate $x(2)$ and $y(2)$ for the initial value problem

$$
\begin{array}{ll}
\frac{d x}{d t}=.2 x+.3 y & x(0)=7 \\
\frac{d y}{d t}=.4 x-.3 y & y(0)=6
\end{array}
$$

Answer:

$$
\begin{array}{ll}
x_{1}=8.60000000000000 & y_{1}=6.50000000000000 \\
x_{2}=10.4350000000000 & y_{2}=7.24500000000000 \\
x_{3}=12.5652500000000 & y_{3}=8.24525000000000 \\
x_{4}=5.0585625000000 & y_{4}=9.52151250000000
\end{array}
$$

Which gives

$$
x(2) \approx 5.0585625000000 \quad y(2) \approx 9.52151250000000
$$

