Mathematics 172 Homework

1. (Verification of Bret's method.) Show that

$$y = -\frac{c}{r} + \left(y_0 + \frac{c}{r}\right)e^{rt}$$

is a solution to the intinal value problem

$$y' = ry + c, \qquad y(0) = y_0$$

where r and c are constants.

2. The special case of this that is relevant to our current topic is that we have a meta population of organism living in a collection of patches with the probability of a populated patch going extent being p_e and the probability of an unpopulated patch being colonized is p_i , then the fraction, f, of the patches that are populated satisfies

$$f' = p_i(1-f) - p_e f = -(p_i + p_e)f + p_i.$$

Therefore Bret's method gives us that the solution is

$$f(t) = \frac{p_i}{p_i + p_e} + \left(f(0) - \frac{p_i}{p_i + p_e}\right)e^{-(p_i + p_e)t}.$$

If we let

$$\widehat{f} = \frac{p_i}{p_i + p_e}$$

be the equilibrium solution, this solution can also be written as

$$f(t) = \widehat{f} + (f(0) - \widehat{f})e^{-(p_i + p_e)t}$$

Use this to solve the following

(a) If $p_e = .5$ and $p_i = .9$, then what is the fraction of patches that are populated in the long run? Answer: $\hat{f} = .9/(.5 + .9) = .642857$ What is the solution with f(0) = .25? Answer: $f(t) = .642857 + (.25 - .642857)e^{-1.4t} = .642857 - 0.392857e^{-1.4t}$ For this solution what is f(10)? Answer: f(10) = 0.642857

(b) If $p_e = .8$ and $p_i = .4$, then what is the fraction of patches that are populated in the long run? Answer: $\hat{f} = .4/(.4 + .8) = .33333$ What is the solution with f(0) = .5? Answer: $f(t) = .33333 + (.5 - .33333)e^{-1.2t} = .33333 - .16667e^{-1.4t}$ For this solution what is f(3)? Answer: f(10) = 0.337887

Here is some practice on Euler's method. Recall that this says that for a system

$$\frac{dx}{dt} = f(x, y)$$
$$\frac{dy}{dt} = g(x, y)$$

that if we choose a small Δt and set

$$t_k = k\Delta t, \qquad x_0 = x(0), \qquad y_0 = y(0)$$

and

 $\mathbf{2}$

$$x_{k+1} = x_k + f(x_k, y_k)$$
$$y_{k+1} = y_h + g(x_k, y_k)$$

Then we have the approximations

$$\begin{aligned} x(t_k) &\approx x_k \\ y(t_k) &\approx y_k \end{aligned}$$

3. Using Euler's method and four steps of size $\Delta t = .5$ approximate x(2) and y(2) for the initial value problem

$$\frac{dx}{dt} = .2x + .3y \qquad \qquad x(0) = 7$$
$$\frac{dy}{dt} = .4x - .3y \qquad \qquad y(0) = 6$$

Answer:

$x_1 = 8.6000000000000000000000000000000000000$	$y_1 = 6.5000000000000000000000000000000000000$
$x_2 = 10.4350000000000$	$y_2 = 7.245000000000000000000000000000000000000$
$x_3 = 12.5652500000000$	$y_3 = 8.24525000000000$
$x_4 = 5.0585625000000$	$y_4 = 9.52151250000000$

Which gives

 $x(2) \approx 5.0585625000000$

$$y(2) \approx 9.52151250000000$$