Mathematics 172 Homework

Consider an organism with a three stage life history summarized by the loop diagram of Figure 1.

Figure 1
The Leslie matrix is

$$
L=\left[\begin{array}{ccc}
F_{1} & F_{2} & F_{3} \\
P_{1} & 0 & 0 \\
0 & P_{2} & 0
\end{array}\right]
$$

Our goal is to find a method compute the discrete growth rate, λ, the per capita growth rate, $r=\lambda-1$ and the stable age distribution exactly. Let

$$
\vec{n}(t)=\left[\begin{array}{l}
n_{1}(t) \\
n_{2}(t) \\
n_{3}(t)
\end{array}\right]
$$

If we have reached the stable age distribution then

$$
\vec{n}(t+1)=\lambda \vec{n}(t)
$$

that is

$$
\left[\begin{array}{l}
n_{1}(t+1) \\
n_{2}(t+1) \\
n_{3}(t+1)
\end{array}\right]=\lambda\left[\begin{array}{l}
n_{1}(t) \\
n_{2}(t) \\
n_{3}(t)
\end{array}\right]
$$

which leads to the three equations

$$
\begin{aligned}
& n_{1}(t+1)=\lambda n_{1}(t) \\
& n_{2}(t+1)=\lambda n_{2}(t) \\
& n_{3}(t+1)=\lambda n_{3}(t) .
\end{aligned}
$$

From the loop diagram we have

$$
\begin{aligned}
& n_{1}(t+1)=F_{1} n_{1}(t)+F_{2} n_{2}(t)+F_{3} n_{3}(t) \\
& n_{2}(t+1)=P_{1} n_{1}(t) \\
& n_{3}(t+1)=P_{2} n_{2}(t) .
\end{aligned}
$$

This leads to

$$
\begin{align*}
& \lambda n_{1}(t)=F_{1} n_{1}(t)+F_{2} n_{2}(t)+F_{3} n_{3}(t) \tag{1}\\
& \lambda n_{2}(t)=P_{1} n_{1}(t) \tag{2}\\
& \lambda n_{3}(t)=P_{2} n_{2}(t) . \tag{3}
\end{align*}
$$

From equation (3) we get

$$
n_{3}(t)=\frac{P_{2}}{\lambda} n_{2}(t)
$$

From (2) we find

$$
n_{2}(t)=\frac{P_{1}}{\lambda} n_{1}(t)
$$

Combining these gives

$$
n_{3}(t)=\frac{P_{2}}{\lambda} n_{2}(t)=\frac{P_{2}}{\lambda} \frac{P_{1}}{\lambda} n_{1}(t)=\frac{P_{2} P_{1}}{\lambda^{2}} n_{1}(t) .
$$

Using our formulas for $n_{2}(t)$ and $n_{3}(t)$ in equation (1) give

$$
\lambda n_{1}(t)=F_{1} n_{1}(t)+F_{2} \frac{P_{1}}{\lambda} n_{1}(t)+F_{3} \frac{P_{2} P_{1}}{\lambda^{2}} n_{1}(t) .
$$

Dividing by $\lambda n_{1}(t)$ we find that the $n_{1}(t)$ factor cancels out and the result is

$$
1=\frac{F_{1}}{\lambda}+\frac{F_{2} P_{1}}{\lambda^{2}}+\frac{F_{3} P_{2} P_{1}}{\lambda^{3}} .
$$

With a little more work this gives
Proposition 1. The discrete grow rate λ is the unique positive solution to the Euler-Lotka equation

$$
1-\frac{F_{1}}{\lambda}-\frac{F_{2} P_{1}}{\lambda^{2}}-\frac{F_{3} P_{2} P_{1}}{\lambda^{3}}=0
$$

which is easily solve on a calculator or computer. Then we also know the per capita growth rate $r=\lambda-1$.

One we know λ we then have

$$
n_{2}(t)=\frac{P_{1}}{\lambda} n_{1}(t), \quad n_{3}(t)=\frac{P_{2} P_{1}}{\lambda^{2}} n_{1}(t)
$$

so that

$$
\vec{n}(t)=\left[\begin{array}{c}
n_{1}(t) \\
n_{2}(t) \\
n_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
n_{1}(t) \\
\frac{P_{1}}{\lambda} n_{1}(t) \\
\frac{P_{2} P_{1}}{\lambda^{2}} n_{1}(t)
\end{array}\right]=n_{1}(t)\left[\begin{array}{c}
1 \\
\frac{P_{1}}{\lambda} \\
\frac{P_{2} P_{1}}{\lambda^{2}}
\end{array}\right]
$$

Which lets us compute the stable age distribution.

$$
\begin{aligned}
& \text { Proportion in stage } 1=\frac{1}{1+\frac{P_{1}}{\lambda}+\frac{P_{2} P_{1}}{\lambda^{2}}}=\frac{\lambda^{2}}{\lambda^{2}+P_{1} \lambda+P_{2} P_{1}} \\
& \text { Proportion in stage } 2=\frac{\frac{P_{1}}{\lambda}}{1+\frac{P_{1}}{\lambda}+\frac{P_{2} P_{1}}{\lambda^{2}}}=\frac{P_{1} \lambda}{\lambda^{2}+P_{1} \lambda+P_{2} P_{1}} \\
& \text { Proportion in stage } 3=\frac{\frac{P_{2} P_{1}}{\lambda^{2}}}{1+\frac{P_{1}}{\lambda}+\frac{P_{2} P_{1}}{\lambda^{2}}}=\frac{P_{1} P_{2}}{\lambda^{2}+P_{1} \lambda+P_{2} P_{1}}
\end{aligned}
$$

1. Use these formula to find the per capita growth rate, r, and the stable age distribution for the Leslie matrix

$$
L=\left[\begin{array}{ccc}
0.05 & 1.3 & 10.7 \\
0.16 & 0 . & 0.0 \\
0.0 & 0.55 & 0.0
\end{array}\right]
$$

Answer: $r=068832$
Proportion in sage $1=0.81517$
Proportion in sage $2=0.13042$
Proportion in sage $3=0.07173$
2. Do the same of the Leslie matrix:

$$
L=\left[\begin{array}{ccc}
0.15 & 1.3 & 5.4 \\
0.2 & 0 . & 0.0 \\
0 . & 0.8 & 0 .
\end{array}\right]
$$

Answer: $r=.068832$

Proportion in sage $1=0.7610$
Proportion in sage $2=0.1522$
Proportion in sage $3=0.1217$

