Quiz #30

Key Name:

You must show your work to get full credit.

Here is how to a rate equation of the form

$$\frac{dP}{dt} = kP + c$$

where k and c are constants. To be specific let us use constants:

$$\frac{dP}{dt} = -2P + 100.$$

and assume P(0) = 40.

1. Find the quilibrium point. (Hint: The answer is 50, but you should show your L = -2P +100 =0 work.

Find the rate equation for y.

P= 4 + 90 de de

Rate equation is $\frac{dy}{dt} = -2y$

dy = df = -2 P+100 = -2 (y+50) +100 =-2y

3. Find y(0) = P(0) - 50 = 40 - 50 y(0) = 9 = 40 = -10

4. Find a formula for y(t). 9(2) = 9(0) e 2 + = -10 e 2 + $y(t) = 10 e^{2A}$

5. Finish by finding a formula for P(t) $P(t) = \frac{50 - 10e^{2xt}}{150}$