Mathematics 172 Homework

Our main result in the our latest class meeting was
Theorem 1. If r is a constant, then a function $y(t)$ satisfies the differential equation

$$
\frac{d y}{d t}=r y
$$

if and only if it is the form

$$
y(t)=y_{0} e^{r t} .
$$

Here are some problems related to this

1. If N satisfies

$$
\frac{d N}{d t}=.35 N
$$

and $N(0)=45$, then
(a) Give a formula $N(t)$. Answer: $N(t)=N_{0} e^{r t}=45 e^{.35 t}$.
(b) When does $N(t)$ becove 10,000 ? Answer: Solve $45 e^{.35 t}$ to get $t=$ $\ln (10,000 / 45) / .35=15.439$
2. If

$$
\frac{d P}{d t}=r P
$$

where r is a constant and $P(10)=9.6 P(0)$, then find r. Answer: The form of P is $P(t)=P_{0} e^{r t}$. We wish to solve $P(10)=P_{0} e^{10 r}=9.6 P_{0}$ for r. Note the the P_{0} 's cancel and we get the solution $r=\ln (9.6) / 10=.2261$

Here is one that is a big more challenging.
3. If we know that a population grows such that

$$
\frac{d N}{d t}=r N
$$

and that $N(2)=120$ and $N(5)=154$, then find r and the intial population size $N_{0}=N_{0}$. Answer: We know the $N(t)$ has the form $N(t)=N_{0} e^{r t}$. We also know

$$
\begin{aligned}
& N(2)=N_{0} e^{2 r}=120 \\
& N(5)=N_{0} e^{5 r}=154
\end{aligned}
$$

You can divide this (to cancel out the N_{0} 's) to get

$$
\frac{154}{120}=\frac{N_{0} e^{5 r}}{N_{0} e^{2 r}}=e^{5 r-2 r}=e^{3 r}
$$

So that $r=\ln (154 / 120) / 3=.08315$ Thus we now know

$$
N(t)=N_{0} e^{.08315 t} .
$$

This can now be use to find N_{0}. For example

$$
N(2)=N_{0} e^{.08315(2)}=120
$$

This

$$
N_{0}=\frac{120}{e^{.08315(2)}}=101.615
$$

And therefore

$$
N(t)=101.615 e^{.08315 t}
$$

