Mathematics 172 Homework

The material below is also covered in pages 11–14 of the text.

Let a population of organisms grow with out any constrants. Assume they breed once a year and let N_t be the number of them after t years. Let $\Delta_t N$ be

$$\Delta_t N = N_{t+1} - N_t.$$

This is the change in the size of the population from year t to year t + 1. We then have

$$\Delta_t N = ($$
number of births in year $t) - ($ number of deaths in year $t).$

1. Explain why if the size of the population size doubles, that the number of births doubles. And if the population size doubles triples, then the number of births triples. \Box

From the last problem we see that the number of births is proportional to the number size of the population and therefore here is a constant b (the per capita birth rate) such that

(number of births in year t) = bN_t

2. Explain why if the size of the population size doubles, that the number of deaths doubles. And if the population size doubles triples, then the number of deaths triples. \Box

As before this gives that there is a constant d (the per capita death rate) such that

(number of deaths in year t) = dN_t

3. Combine these equations to get

$$\Delta_t N = (b - d)N_t.$$

We set r = (b - d) and call it **discrete growth factor**. Then we have

$$\Delta_t N = r N_t.$$

4. Use $\Delta_t = N_{t+1} - N_t$ in $\Delta_t N = rN_t$ to get the equation

$$N_{t+1} = (1+r)N_t.$$

We set

$$\lambda = (1+r)$$

and call it *finite rate of increase*. Using $\lambda = 1 + r$ in $N_{t+1} = (1 + r)N_t$ gives

$$N_{t+1} = \lambda N_t.$$

We can use this repeatedly to get a formula for N_t .

$$N_1 = \lambda N_0$$

$$N_2 = \lambda N_1 = \lambda \lambda N_0 = N_0 \lambda^2$$

$$N_3 = \lambda N_2 = \lambda N_0 \lambda^2 = N_0 \lambda^3$$

$$N_4 = \lambda N_3 = \lambda N_0 \lambda^3 = N_0 \lambda^4$$

$$N_5 = \lambda N_4 = \lambda N_0 \lambda^4 = N_0 \lambda^5$$

so that we have

$$N_t = N_0 \lambda^t$$
.

If r = (b - d) > 0 (that if the per capita birth rate is greater than the per capita death rate) then $\lambda = 1 + r > 1$ and the population grows exponentially. If r = (b - d) < 0 (that if the per capita birth rate is less than the per capita death rate) then $\lambda < 1$ and the population decreases exponentially.

5. A lake is has 100 bass released in it. If the per capita birth rate is 7.3 bass per bass and the per capita death rate is 4.7 bass/bass then

(a) Give a formula for number of bass in t years. Answer: $N_t = 100(3.6)^t$.

(b) How long until there are one million bass in the lake? Answer: 7.190 years.

(c) How long until there are a billion bass in the lake? Answer: 12.58 years.

6. In a new dorm, 15 cockroaches are accidentally introduced. After 4 weeks there are 200 of them. Let N_t be the number of roaches t weeks later.

(a) Find both the discrete growth factor, r, and the finite rate of increase,

 $\lambda = 1 + r$. Answer: $\lambda = (200/15)^{1/4} = 1.911$ and $r = \lambda - 1 = .911$.

(b) Give a formula for N_t . Answer: $N_t = 15\lambda^t = 15(1.911)^t$.

(c) How long does in take for the population of roaches to double? *Answer:* 1.070 weeks.

(d) How long until there are a million roaches. Answer: 17.15 weeks.