Mathematics 172 Homework

Read pages $35-37$ in the text on discrete logistic growth.
The corresponding equation is

$$
N_{t+1}=N_{t}+r N_{t}\left(1-\frac{N_{t}}{K}\right)
$$

where r is the per capita growth rate and K is the carrying capacity. The equilibrium points are

$$
N_{*}=0, \quad \text { and } \quad N_{*}=K .
$$

Thus if $r=.2$ and $K=100$ we get

$$
N_{t+1}=N_{t}+.2 N_{t}\left(1-\frac{N_{t}}{100}\right) .
$$

This tell us that if we know the population in year t (that is we know N_{t}) then we can compute the population the next year (that is we can find N_{t+1}. For example if we start with $N_{0}=120$ then

$$
\begin{aligned}
& N_{1}=102+.2(120)\left(1-\frac{210}{100}\right)=115.2 \\
& N_{2}=115.2+.2(115.2)\left(1-\frac{115.2}{100}\right)=111.7697 \\
& N_{3}=111.7697+.2(111.7697)\left(1-\frac{111.7697}{100}\right)=109.08465 \\
& N_{4}=109.08465+.2(109.08465)\left(1-\frac{109.08465}{100}\right)=107.1027 \\
& N_{5}=107.1027+.2(107.1027)\left(1-\frac{107.1027}{100}\right)=105.5812
\end{aligned}
$$

1. If a population of birds on an island grows with $r=2.5$ and $K=100$, if the initial population size if $N_{0}=80$ then find N_{1}, N_{2} and N_{3}. Answer: $N_{1}=120, N_{2}=60, N_{3}=120, N_{4}=60$ and N_{t} just keeps bouncing back and forth between 60 (when t is even) and 120 (when t is odd).
2. Consider the system

$$
N_{t+1}=.6 N_{t}\left(1+.5 N_{t}^{4}\right) e^{-N_{t}} .
$$

If $N_{0}=4$ find N_{1} and N_{2}. Answer: $N_{1}=5.67052, N_{2}=6.072944, N_{3}=$ $5.718862, N_{4}=6.03685, N_{5}=5.755141$. For some larger values of t we have $N_{99}=5.892203, N_{100}=5.892214, N_{1=1} 5.892204$ and in this case there is a stable equilibrium points with $N_{*}=5.8922$. Thus for any reasonable value of N_{0} we will have $N_{100} \approx 5.8922$.

