Mathematics 172 Homework

1. A population of yeast is growing logistically with an intrinsic growth rate of $r=.6$ grams/day and a carrying capacity of 50 grams. Let $A(t)$ be the number of grams of yeast after t days.
(a) Write the rate equation for A. Answer: $\frac{d A}{d t}=.6 A\left(1-\frac{A}{50}\right)$.
(b) A baker starts using the yeast at a constant rate of 4 grams/day. What is the new rate equation satisfied by A ? Answer: $\frac{d A}{d t}=.6 A\left(1-\frac{A}{50}\right)-4$
(c) What are the equilibrium points for the equation of part (b)? Answer: $A=7.921$ and $A=42.078$.
(d) Which of these is stable? Answer: $A=42.078$.
(e) Redo this problem when the baker is using the rate at 10 grams/day. What happens? Answer: The yeast dies out.
(f) What is the greatest rate that the baker can harvest the yeast without killing it off? Answer: 7.5 grams/day.
2. Again we have a population of yeast is growing logistically with an intrinsic growth rate of $r=.6 \mathrm{grams} /$ day and a carrying capacity of 50 grams. Let $A(t)$ be the number of grams of yeast after t days.
(a) Write the rate equation for A. Answer: $\frac{d A}{d t}=.6 A\left(1-\frac{A}{50}\right)$.
(b) A baker starts using the yeast at a constant rate of 20% of the total amount per day. What is the new rate equation satisfied by A ? Answer: $\frac{d A}{d t}=.6 A\left(1-\frac{A}{50}\right)-.2 A$
(c) What are the equilibrium points for the equation of part (b)? Answer: $A=0.0$ and $A=33.33$.
(d) Which of these is stable? Answer: $A=33.33$.
(e) Redo this problem when the baker is using the rate at 70% grams/day. What happens? Answer: The yeast dies out.
(f) What is the greatest percentage that the baker can harvest each day without killing off the yeast? Answer: . 6 grams/day. (This problem requires more algebra than most.)
