Mathematics 172 Homework assigned Monday, January 13.

In class we talked worked with proportional functions. The functions $f(x)$ and $g(x)$ are proportional if there is a constant c such that

$$
f(x)=c g(x)
$$

1. If $f(x)$ is proportional to the square of x, and $f(10)=5$, then give a formula for $f(x)$. (Answer: $f(x)=x^{2} / 20=.05 x^{2}$.)
2. If $f(x)$ is proportional to the reciprocal of x, what happens to the output, $f(x)$, if the input, x, is doubled? (Answer:It is divided by 2.) What happens to the output if the input is tripled? (Answer:The output is divided by 3.)

Here is are a couple of basic facts that allows one to recognize if a function is proportional to x or x^{2}.
Theorem 1. If $f(x)$ is a continuous function defined on $x>0$ such that

$$
f(2 x)=2 f(x) \quad \text { and } \quad f(3 x)=3 f(x)
$$

then $f(x)$ is proportional to x. That is there is a constant c such that

$$
f(x)=c x
$$

Theorem 2. If $f(x)$ is a continuous function defined on $x>0$ such that

$$
f(2 x)=2^{2} f(x) \quad \text { and } \quad f(3 x)=3^{2} f(x)
$$

then $f(x)$ is proportional to x^{2}. That is there is a constant c such that

$$
f(x)=c x^{2}
$$

3. Let $P(t)$ be a function defined for $t>0$ such that doubling the input, t, doubles the output, $P(t)$, and tripling the input triples the output. Assume $P(10)=30$. Find a formula for $P(t) .($ Answer: $P(t)=3 t)$
4. Let $Q(r)$ be a function defined for $r>0$ such that doubling the input, r, multiples the output, $Q(r)$, by $2^{2}=4$ and tripling the input multiples the output by $3^{2}=9$. Assume $Q(2)=24$. Give a formula for $Q(r)$. (Answer: $Q(r)=6 r^{2}$.)

Consider a triangle and the triangles that have side lengths twice and three times as those in the original triangle. See Figure 1.

Figure 1
5. Recall that the perimeter of a triangle is the sum of the side lengths. How do the perimeters of the triangles in Figure 1 compare?
6. Consider a triangle similar to our original triangle. Assume that the longest side of the original triangle is 2 and that its perimeter is 5 . Then what is the perimeter a triangle similar to this triangle where its longest side is 15 ?
7. What happens to the area of the triangle if we double or triple all the side lengths? See Figure 2 for a hint.

Figure 2
8. If the original triangle has area 5 and its shortest side has length 3 , then what is the area of a similar triangle whose short side is 30 ?

