Mathematics 172

Quiz 3

Name: Key

You must show your work to get full credit.

A population of paramecium in a tank has an intrinsic growth rate of r = -.02 (paramecium/day)/paramecium.

(1) If the tank is stocked at a constant rate of S=10 paramecium/day, then what is the stable population size?

Population size =
$$\frac{500}{100}$$

Let $P(t) = number of Parameerum after $t days$,

the grate equ is

$$\frac{dP}{dt} = -.02P + 10$$
At the stable population $412e$

$$\frac{dP}{dt} = -.02P + 10 = 0$$$

(2) If we wish to maintain a stable population size of 10,000 paramecium, then at what rate should the tank be stocked?

Stocking rate is
$$S = 200$$

This time the rate equation is

 $dP = .02P + S$

whome $S = stocking$ rate.

 $solving$
 $dP = -.02P + S = U$

Since $P = \frac{S}{.02} = 50S$

for the stable monulation size, we want this to he

 $50S = 10,000$

i.e. $S = \frac{10,000}{50} = \frac{1000}{5} = 200$