Quiz #25

Name: Kex

You must show your work to get full credit.

The wood of Douglas fir crushes at a pressure of $428.6 \text{ lbs/in}^2=61,718.4 \text{ lbs/ft}^2$. A Douglas fir of height 10 ft has a diameter at the base of 9 in (= .75 ft) and weighs 350 lbs.

1. Let D(h) be the diameter at the base of a Douglas fir of height h feet. Give a formula for D(h).

$$D(h) = _{\bullet 075 h}$$

2. Let W(h) be the weight of a Douglas fir of height h feet. Give a formula for W(h).

$$W(h)$$
.
 $W(h) = c h^3$
 $W(10) = c (10)^3 = 350$
 $C = \frac{350}{10^3} = -35$

$$W(h) = 35 h^3$$

3. What is the area of the base a Douglas fir of height h feet?

$$A(h) = \pi (radius)^2$$

$$= \pi (\frac{1}{2}D(h))^2$$
Area is $A(h) = .004418h^2$

$$= \pi (\frac{1}{2}(.075h))^2 = .004418h^2$$

4. What is the pressure on the base of a Douglas fir of height h?

Pressure =
$$\frac{\text{Weight}}{\text{Area}}$$
 Pressure is $\frac{79.22 \text{ sh}}{10094418 \text{ N}^2} = \frac{79.22 \text{ sh}}{10094418 \text{ N}^2}$

5. What is the maximum height of a Douglas fir before it crushes itself from its own weight.

Theorys 90 had when Maximum height is 779.1 ft 79.22 h = 61,718.4 lbs $50 \text{ maximum weight} = \frac{61,718.4}{79.22} = 779.1 \text{ ft}$

Remove & The largest thoun Douglas fir was 393 ft talla