Homework assigned Wednesday, February 1.

Read pages 35–37 in the text on discrete logistic growth. The corresponding equation is

$$N_{t+1} = N_t + rN_t \left(1 - \frac{N_t}{K}\right)$$

where r is the per *capita growth* rate and K is the *carrying capacity*. The equilibrium points are

$$N_* = 0, \qquad \text{and} \qquad N_* = K.$$

Theorem 1. For the discrete logistic equation, the equilibrium point $N_* = 0$ is always unstable and the equilibrium point $N_* = 0$ is stable when 0 < r < 2 and unstable when 2 < r.

- (1) If a population of birds on an island grows with r = 2.5 and K = 100, if the initial population size if $N_0 = 80$ then find N_1 , N_2 and N_3 . Does this population every settle down to a stable population size?
- (2) Consider the system

$$N_{t+1} = .6N_t(1 + .5N_t^4)e^{-N_t}.$$

- (a) If $N_0 = 4$ find N_1 and N_2 .
- (b) Plot $y = .6x(1 + .5x)e^{-s}$ and y = x on the same window on your calculate with $0 \le x \le 10$. Use the 2nd calc intersect function to find the equilibrium points.
- (c) Which of the equilibrium points are stable?