
Homework assigned Friday, January 27.

The following rate equation is sometimes used as a variant on the logistic
equation.
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where, as usual, r is the intrinsic growth rate and K is carrying carrying
capacity. The parameter θ can be chosen make the equation fit data. Here
is a particular case
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Problem 1. Draw a graph if dN
dt as a function of N for 0 ≤ N ≤ 1, 200.

Problem 2. What are the stationary solutions? Answer: N = 0 and N =
1, 000.

Problem 3. If the population is now harvested at a rate of 20 the rate
equation becomes
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)
− 20.

Graph dN
dt as a function of N for 0 ≤ N ≤ 1, 000, use this to find the

stationary solutions and graph the solutions with N(0) = 1000, N(0) = 50
and determine which of the stationary solutions is stable. Answers: The
stationary solutions are N = 229.1 and N = 818.7. The stationary solutions
N = 818.7 is stable.

Problem 4. Starting with a population that grows by the rate equation
(1) what is the largest harvesting rate that can be used without killing off
the population? Answer: This largest harvesting rate is the maximum of
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on 0 ≤ N ≤ 1, 000. Using the graph from problem 1

and the calculator compute this maximum to be 31.23


