Homework assigned Friday, January 20.

(1) For the rate equation

$$
\frac{d N}{d t}=.1 N(20-N)
$$

(a) If $N(0)=10$ what is $N^{\prime}(0)$? (Recall that N^{\prime} is just another notation for $\frac{d N}{d t}$.) Answer: $N^{\prime}(0)=10$.
(b) If $N(0)=25$ what is $N^{\prime}(0)$? Answer: $N^{\prime}(0)=-12.5$.
(c) What are the stationary solutions? Answer: $N=0,20$.
(d) Make a graph showing some solutions to $N^{\prime}=.1 N(20-N)$ including the solutions with $N(0)=10$ and $N(0)=25$.
(e) If $N(0)=25$ estimate $N(1,000)$. Answer: $N(1,000) \approx 20$.
(f) If $N(0)=10$ estimate $N(5,000)$. Answer: $N(5,000) \approx 20$.
(g) If $N(5)=6$ then what is $N^{\prime}(5)$? Answer: $N^{\prime}(5)=.1(6)(20-$ $6)=8.4$.
(2) For the rate equation

$$
\frac{d P}{d t}=-.1 P(P-4)(P-10)
$$

(a) What are the stationary solutions? answer: $P=0,4,10$.
(b) Make a graph showing the solutions with $P(0)=1, P(0)=5$, $P(0)=8$, and $P(0)=13$.
(c) For the solution with $P(0)=1$ estimate $P(5,532)$. Answer: $P(5,532) \approx 0$
(d) For the solution with $P(0)=5$ estimate $P(789)$. Answer: $P(789) \approx 10$.
(e) For the solution with $P(0)=13$ estimate $P(10,000)$. Answer: $P(10,000) \approx 10$.

