Homework assigned Wednesday, April 11.

Problem 1. Due to poaching, a population of bears in a national forest grows at a discrete exponential rate with a per-capita growth rate of -. 3 (bears/year)/bear. To keep a stable population size of 75 bears how many bears per year should be stocked into the park each year? Answer: Stock at a rate of $S=.3 \cdot 75=22.5$ bears/year.

Problem 2. A population of bass in a pond grows logistically with an intrinsic growth rate of $r=.2$ (fish/year)/fish and a carrying capacity of 2000 fish.
(a) If fish are harvested at a rate of 15% of the population per year what is the long term effect on the population? Answer: The new rate equation is

$$
\frac{d N}{d t}=.2 N\left(1-\frac{N}{2000}\right)-.15 N
$$

Solving this equal to zero gives equilibrium points $N=0$ and $N=500$. The point $N=500$ is stable, so in the long run the population stabilizes at $N=500$ fish.
(b) If the fish are harvested at a rate of 50 fish/year what is the long term effect on the population? Answer: This time the new rate equation is

$$
\frac{d N}{d t}=.2 N\left(1-\frac{N}{2000}\right)-50 .
$$

Solving this equal to zero gives that there are equilibrium points at $N=$ 292.9 and $N=1707.1$ The second of these is stable so the long term effect on the population is that it stablizes at about $N=1701$ fish.
(c) What is the maximum rate the fish can be harvested without the population dying out? Answer: This is the maximum of right side of

$$
\frac{d N}{d t}=.2 N\left(1-\frac{N}{2000}\right)
$$

which we can compute to be 100 fish/year.

