Homework assigned Wednesday, April 4.

Problem 1. Consider the predator-prey, or in the books terminology, predatorvictim system

$$
\begin{aligned}
\frac{d V}{d t} & =r V\left(1-\frac{V}{K}\right)-\alpha V P \\
\frac{d P}{d t} & =-q P+\beta V P
\end{aligned}
$$

where in this case the victim population grows logistically in the absence of the predators. This has three equilibrium points. Solve the equations

$$
\begin{array}{r}
r V\left(1-\frac{V}{K}\right)-\alpha V P=0 \\
-q P+\beta V P=0
\end{array}
$$

to thing them. Answer: They are $(V, P)=(0,0),(V, P)=(K, 0)$, and $(V, P)=\left(\frac{q}{\beta}, \frac{r}{\alpha}\left(1-\frac{q}{\beta K}\right)\right)$.
Problem 2. For the system

$$
\begin{aligned}
\frac{d V}{d t} & =.2 V\left(1-\frac{V}{200}\right)-.02 V P \\
\frac{d P}{d t} & =-.1 P+.001 V P
\end{aligned}
$$

Find the equilibrium points, draw the phase plane showing the lines where $\frac{d V}{d t}=0$ and $\frac{d P}{d t}=0$ and discuss what happens in the long run. Answer: The equilibrium points are $(0,0),(200,0)$ and $(100,5)$. In the long run the populations stabilize at $\widehat{V}=100$, and $\widehat{P}=5$. Here is the phase space.

Figure 1

Problem 3. Do the same for the system

$$
\begin{aligned}
\frac{d V}{d t} & =.02 V\left(1-\frac{V}{200}\right)-.002 V P \\
\frac{d P}{d t} & =-.1 P+.0004 V P
\end{aligned}
$$

The equilibrium points are $(0,0),(200,0)$ and $(250,-2.5)$. But we can ignore the last of these as the negative value $P=-2.5$ has no biological meaning. The phase diagram is

Figure 2
In this case the predator goes extinct and the victim population settles down to its carrying capacity $V=200$.

