Homework assigned Monday, March 12.

Our model for competing species is that if
x(t) = number of first species at time ¢

y(t) = number of second species at time ¢

then
dx Ki—x—ay
at < K >
@:mx <K2—ﬂx—y>
dt Ky

We have analyzed the qualitative behavior in terms of the phase diagram.
We now want to be a little more qualitative. Let’s look at an example.

dx _ 0% (50 —x— .333y>

dt 50
dy 60 — .5z —y
at '05y< 60 )
d d d
The equilibrium points are where both d;: =0 and d—gz = 0. Note d—x =0

implies
z=0 or x4+ .2y =40
d
and d—‘q; = 0 implies
y=20 or A4545x + y = 50.

So we find the four equilibrium points by considering four cases.

Case 1. x = 0 and y = 0. This leads to the equilibrium point (z,y) =
(0,0). Biologically this corresponds to case where there are none of either
species. This is an equilibrium points, but it is uninteresting and unstable.

Case 2. x = 0 and .4545x 4+ y = 50. This gives the equilibrium point
(z,y) = (0,50). Biologically this corresponds to there being none of the first
species and the second species growing logistically with carrying capacity
Ky = 50.

Case 3. ©+ .2y = 40 and y = 0. This gives the equilibrium point (z,y) =
(40,0). Biologically this corresponds to there being none of the second
species and the second species growing logistically with carrying capacity
Ky = 40.

Case 4. © + .2y = 40 and .4545z + y = 50. Solving these equations gives
(z,y) = (33,35) (accurate to two decimal places).

We now draw the phase diagram.

By drawing in the arrows for the diagram we see that the equilibrium
point at (33, 35) is stable.
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FIGURE 1. The line for ‘fi—f = 0 is in red and the line for

dy_ P
3t =0isin blue.

The point of all this is that we can find the coordinates of the equilibrium
points.

Problem 1. Find the coordinates of the equilibrium points of

50 — x — .333
T 31 <H>

dt 50

dy 60 — .5z —y
=1y —
dt y( 60 >

Answer: (xz,y) = (0,0), (z,y) = (50,0), (x,y) = (0,60), and (z,y) =
(36,42).



