## Homework assigned Monday, March 12.

Our model for competing species is that if

$$
\begin{aligned}
& x(t)=\text { number of first species at time } t \\
& y(t)=\text { number of second species at time } t
\end{aligned}
$$

then

$$
\begin{aligned}
& \frac{d x}{d t}=r_{1} x\left(\frac{K_{1}-x-\alpha y}{K_{1}}\right) \\
& \frac{d y}{d t}=r_{2} x\left(\frac{K_{2}-\beta x-y}{K_{2}}\right)
\end{aligned}
$$

We have analyzed the qualitative behavior in terms of the phase diagram. We now want to be a little more qualitative. Let's look at an example.

$$
\begin{aligned}
& \frac{d x}{d t}=.02 x\left(\frac{50-x-.333 y}{50}\right) \\
& \frac{d y}{d t}=.05 y\left(\frac{60-.5 x-y}{60}\right)
\end{aligned}
$$

The equilibrium points are where both $\frac{d x}{d t}=0$ and $\frac{d y}{d t}=0$. Note $\frac{d x}{d t}=0$ implies

$$
x=0 \quad \text { or } \quad x+.2 y=40
$$

and $\frac{d y}{d t}=0$ implies

$$
y=0 \quad \text { or } \quad .4545 x+y=50 \text {. }
$$

So we find the four equilibrium points by considering four cases.
Case 1. $x=0$ and $y=0$. This leads to the equilibrium point $(x, y)=$ $(0,0)$. Biologically this corresponds to case where there are none of either species. This is an equilibrium points, but it is uninteresting and unstable.

Case 2. $x=0$ and $.4545 x+y=50$. This gives the equilibrium point $(x, y)=(0,50)$. Biologically this corresponds to there being none of the first species and the second species growing logistically with carrying capacity $K_{2}=50$.

Case 3. $x+.2 y=40$ and $y=0$. This gives the equilibrium point $(x, y)=$ $(40,0)$. Biologically this corresponds to there being none of the second species and the second species growing logistically with carrying capacity $K_{1}=40$.

Case 4. $x+.2 y=40$ and $.4545 x+y=50$. Solving these equations gives $(x, y)=(33,35)$ (accurate to two decimal places).

We now draw the phase diagram.
By drawing in the arrows for the diagram we see that the equilibrium point at $(33,35)$ is stable.


Figure 1. The line for $\frac{d x}{d t}=0$ is in red and the line for $\frac{d y}{d t}=0$ is in blue.

The point of all this is that we can find the coordinates of the equilibrium points.
Problem 1. Find the coordinates of the equilibrium points of

$$
\begin{aligned}
& \frac{d x}{d t}=.31 x\left(\frac{50-x-.333 y}{50}\right) \\
& \frac{d y}{d t}=.12 y\left(\frac{60-.5 x-y}{60}\right)
\end{aligned}
$$

Answer: $(x, y)=(0,0),(x, y)=(50,0),(x, y)=(0,60)$, and $(x, y)=$ $(36,42)$.

