Homework assigned Monday, February 20.

A plant has 3 stages in its life history. It can be
(1) A seed,
(2) A juveniles that only produce a few seeds,
(3) An adult which produces more seeds.

The life history is summarized by the following loop diagram.

1. What is the average number of female seeds produced by an adult? Answer: 10.
2. What proportion of juveniles stay juvenile for another year? Answer: . 3
3. What proportion of juveniles become adults the next year? Answer: . 1
4. What proportion of die in a given year? Answer: $1-.3-.1=.6$
5. What is the Leslie Matrix? Answer: $A=\left[\begin{array}{ccc}.1 & 2 & 10 \\ .2 & .3 & 0 \\ 0 & .1 & .7\end{array}\right]$.
6. Based on an initial population distribution of

$$
\mathbf{n}(0)=\left[\begin{array}{c}
10 \\
2 \\
1
\end{array}\right]
$$

compute $\mathbf{n}(30)$ and $\mathbf{n}(31)$. Answer:

$$
\mathbf{n}(30)=\left[\begin{array}{c}
529.3766 \\
127.02818 \\
29.3043
\end{array}\right], \quad \mathbf{n}(31)=\left[\begin{array}{c}
600.03740 \\
143.9837 \\
33.2158
\end{array}\right]
$$

7. To find the growth rate we look to find λ with

$$
\mathbf{n}(31)=\lambda \mathbf{n}(30)
$$

that is

$$
\left[\begin{array}{c}
600.03740 \\
143.9837 \\
33.2158
\end{array}\right]=\left[\begin{array}{c}
529.3766 \lambda \\
127.02818 \lambda \\
29.3043 \lambda
\end{array}\right]
$$

This leads to three equations for λ

$$
\begin{aligned}
529.3766 \lambda & =600.03740 \\
127.02818 \lambda & =143.9837 \\
29.3043 \lambda & =33.2158
\end{aligned}
$$

Solve these for λ and compare the results. Answer:

$$
\begin{aligned}
& \lambda=\frac{600.03740}{529.3766}=1.1335, \\
& \lambda=\frac{143.9837}{127.02818}=1.13354, \\
& \lambda=\frac{33.2158}{29.3043}=1.13348
\end{aligned}
$$

So, accurate to 4 decimal places, $\lambda=1.1335$. Thus the per capita growth rate is

$$
r=\lambda-1=.1335
$$

8. Finally find the stable age distribution. Answer: I used the numbers from $\mathbf{n}(30)$ and got

Proportion of population that is seeds $=.7720=77.20 \%$
Proportion of population that is juvenile $=.1852=18.52 \%$
Proportion of population that is adult $=.04273=4.273 \%$

