Homework assigned Friday, February 3.

Consider the following discrete dynamical system

$$
N_{t+1}=.1 N_{t} e^{.6 N_{t}\left(4-N_{t}\right)} .
$$

We wish to use our calculators to find the equilibrium points and determine which are stable.
(1) What two functions to we want for $\backslash \mathrm{Y}_{1}=$ and $\backslash \mathrm{Y}_{2}=$? Answer: $\backslash \mathrm{Y}_{1}=$. $1 \mathrm{Xe}{ }^{\wedge}(.6 \mathrm{X}(4-\mathrm{X}))$ and $\backslash Y_{2}=\mathrm{X}$.
(2) As usual the hardest part is finding an appropriate window. It is clear that xmin $=0$. Do some trial and error to find a value for xmax that seems to work well. Answer: There is no single anwer for this. I used xmax $=3$ and it worked fine.
(3) Use the calculator to find the equilibrium points. Answer: $N_{*}=0$, $N_{*}=1.5970$, and $N_{*}=2.4029$.
(4) What are the slopes at the equilibrium points? Answer: At $N_{*}=0$ $\mathrm{dy} / \mathrm{dx}=.1000002$ At $N_{*}=1.5970, \mathrm{dy} / \mathrm{dx}=1.7722$ At $N_{*}=2.4029$ $d y / d x=-.16175$
(5) Which of the equilibrium points are stable? Which unstable? Answer: $N_{*}=0$ and $N_{*}=2.4029$ are stable. $N_{*}=1.5970$ is unstable.
(6) If $N_{0}=1$ estimate N_{20}. Answer: $N_{20} \approx 0$.
(7) If $N_{0}=2$ estimate N_{30}. Answer: $N_{30} \approx 2.4029$.

