Work Sheet 1

We have seen that the solution to the difference equation

$$
N_{t+1}=(1+r) N_{t}
$$

is

$$
N_{t}=N_{0}(1+r)^{t}
$$

where N_{0} is the initial size of the population. We now wish to solve the slightly more complicated equation

$$
\begin{equation*}
N_{t+1}=(1+r) N_{t}+S \tag{1}
\end{equation*}
$$

where S is a constant (that might be negative) called the stocking rate. What we do is let

$$
N_{t}=U_{t}+c \quad \text { which is the same as } \quad U_{t}=N_{t}-c
$$

where c is a constant to be determined. We use this in equation (1) to get

$$
U_{t+1}+c=(1+r)\left(U_{t}+c\right)+S
$$

Doing some algebra reduces this to

$$
U_{t+1}=(1+r) U_{t}+(r c+S)
$$

We now choose c so that

$$
(r c+S)=0
$$

that is

$$
c=-\frac{S}{r}
$$

Then the equation for U_{t} becomes

$$
U_{t+1}=(1+r) U_{t}
$$

and we know how to solve this:

$$
U_{t}=U_{0}(1+r)^{t}
$$

Using $U_{t}=N_{t}-c$ gives

$$
N_{t}-c=\left(N_{0}-c\right)(1+r)^{t}
$$

but $c=-\frac{S}{r}$ so this becomes

$$
N_{t}=\left(N_{0}+\frac{S}{r}\right)(1+r)^{t}-\frac{S}{r}
$$

We summarize:
Theorem 1. If $r \neq 0$ then the solution to

$$
N_{t+1}=(1+r) N_{t}+S
$$

$i s$

$$
N_{t}=\left(N_{0}+\frac{S}{r}\right)(1+r)^{t}-\frac{S}{r}
$$

Now assume that $-1<r<0$. Then $0<1+r<1$. Thus as t becomes very large, the number $(1+r)^{t}$ is almost zero. Thus when for very large t we have

$$
N_{t}=\left(N_{0}+\frac{S}{r}\right)(1+r)^{t}-\frac{S}{r} \approx\left(N_{0}+\frac{S}{r}\right) 0-\frac{S}{r}=-\frac{S}{r} .
$$

Thus the size of the population eventually levels out at size $-\frac{S}{r}$. Again we summarize:

Theorem 2. Let $-1<r<0$ and S be any constant. The for any initial value N_{0} the solution to

$$
N_{t+1}=(1+r) N_{t}+S
$$

will eventually level out at the value

$$
N_{\infty}=-\frac{S}{r} .
$$

Problem 1. Assume that a lake is being over fished for trout to the extent that the annually rate of increase of the trout population is $r=-.15$ (trout/year)/trout. At what rate should the lake be stocked so that the trout population stays constant at 10,000 trout?

Solution. If N_{t} is the number of trout in the lake in the t-th year and the lake is stocked with S trout/year, then we want to find S so that the trout population levels off at 10,000 trout. The trout population will satisfy

$$
N_{t+1}=(1+r) N_{t}+S
$$

which in our case, where $r=-.15$, this is

$$
N_{t+1}=.85 N_{t}+S .
$$

The population will level off at a value of

$$
N_{\infty}=-\frac{S}{r}=\frac{S}{.15} .
$$

We want this value to be 10,000 , that is

$$
\frac{S}{.15}=10,000
$$

which leads to the answer

$$
S=(.15)(10,000)=1,500 \text { trout } / \text { year } .
$$

