Homework assigned Monday, September 27

(1) A population of fish in a pond has discrete logistic growth with a carrying capacity of 400 and a per capita growth rate of 1.8 (fish/year)/fish. A some point the someone starts to harvest 40% of the current population.
(a) What is the new equation for the population growth?

Solution: It is

$$
N_{t+1}=N_{t}+1.8 N_{t}\left(1-\frac{N_{t}}{400}\right)-.4 N_{t}
$$

(b) What is the new carrying capacity?

Solution: This may not be quite the shortest method, but it gives a lot of information about what is going on.

$$
\begin{aligned}
N_{t+1} & =N_{t}+1.8 N_{t}\left(1-\frac{N_{t}}{400}\right)-.4 N_{t} & & \\
& =N_{t}+N_{t}\left(1.8\left(1-\frac{N_{t}}{400}\right)-.4\right) & & \text { (Factor } N_{t} \text { out of last two terms) } \\
& =N_{t}+N_{t}\left(1.8-\frac{1.8 N_{t}}{400}-.4\right) & & \text { (Distribute the 1.8) } \\
& =N_{t}+N_{t}\left(1.4-\frac{1.8 N_{t}}{400}\right) & & \text { (Subtract) }
\end{aligned}
$$

$$
=N_{t}+1.4 N_{t}\left(1-\frac{1.8 N_{t}}{(1.4)(400)}\right) \quad(\text { Factor out } 1.4)
$$

$$
=N_{t}+1.4 N_{t}\left(1-\frac{N_{t}}{311.111 \ldots}\right) \quad(\text { Simplify })
$$

So we have written the new equation as a discrete logistic with new carrying capacity $K=311.111$ and new per capita growth rate $r=1.4$.
(2) A population of annual cicada in park has a discrete logistic growth with a carrying capacity of 2,000 and a per capita growth rate of 1.4 (bugs/year)/bug. A new predator in introduced that kills 20% of the cicadas per year.
(a) What is the new equation for the population growth?
(b) What is the new carrying capacity?
(3) A population of deer in a forest has a discrete logistic growth with a carrying capacity of 2,000 and a per capita growth rate of .8 (deer/year)/deer. They become a pest and 20% of the population is harvested each year.
(a) What is the new equation for the population growth?
(b) What is the new carrying capacity?

