Mathematics 172

Quiz \#4

You must show your work to get full credit.

A population of tilapia is harested so that it has a growth rate of $r=-.05$ (fish/week)fish.
(a) If the population is stocked at the rate of 20 fish/weel, what is the size of the stable population?
(b) At what rate should the population be stocked to give a stable population of 150 ?

Solution for (a): If S is the stocking rate, then population size, N_{t}, satisfies

$$
N_{t+1}=(1+r) N_{t}+S
$$

In our case $r=-.2$ and $S=20$, so this becomes

$$
N_{t+1}=.8 N_{t}+20
$$

When the population reaches its stable size, we have $N_{t+1}=N_{t}$ and thus

$$
N_{t}=.8 N_{t}+20
$$

which is the same as $.2 N_{t}=20$ and thus the stable population size is

$$
N_{t}=\frac{20}{.2}=100
$$

Solution for (b): The set up is the same, other than we don't know the stocking rate S. So the equation is

$$
N_{t+1}=.8 N_{t}+S
$$

To get the stable population size, we set $N_{t+1}=N_{t}$ and solve:

$$
N_{t}=.8 N_{t}+S
$$

which has the solution

$$
N_{t}=\frac{S}{.2}
$$

As we want this to be 150 we set

$$
\frac{S}{.2}=150
$$

so the stocking rate is

$$
S=(.2) 150=30
$$

