Mathematics 172

Quiz \#3

You must show your work to get full credit.

A population of fish is over fished until it has a growth rate of $r=-.05$ (fish/year)fish.
(a) If the population is stocked at the rate of 100 fish/year what is the size of the stable population?
(b) At what rate should the population be stocked to give a stable population of 10,000?
Solution for (a): If S is the stocking rate, then population size, N_{t}, satisfies

$$
N_{t+1}=(1+r) N_{t}+S
$$

In our case $r=-.05$ and $S=100$, so this becomes

$$
N_{t+1}=.95 N_{t}+100
$$

When the population reaches its stable size, we have $N_{t+1}=N_{t}$ and thus

$$
N_{t}=.95 N_{t}+100
$$

which is the same as $.05 N_{t}=100$ and thus the stable population size is

$$
N_{t}=\frac{100}{.05}=2,000 .
$$

Solution for (b): The set up is the same, other than we don't know the stocking rate S. So the equation is

$$
N_{t+1}=.95 N_{t}+S
$$

To get the stable population size, we set $N_{t+1}=N_{t}$ and solve:

$$
N_{t}=.95 N_{t}+S
$$

which has the solution

$$
N_{t}=\frac{S}{.05}
$$

As we want this to be 10,000 we set

$$
\frac{S}{.05}=10,000
$$

so the stocking rate is

$$
S=(.05)(10,000)=500
$$

