## Mathematics 172

## Quiz \#12

You must show your work to get full credit.
A population grows of wolves with a discrete logistic groth rate a per capita groth rate of $r=1.5$ (wolves/year)/wolf and and a carrying capacity of $K=500$.
(a) If the population starts with 450 wolves, how many are the the next year?

Solution: The growth equation is

$$
N_{t+1}=N_{t}+1.5 N_{t}\left(1+\frac{N_{t}}{500}\right)
$$

so letting $N_{0}=450$ we get

$$
N_{1}=450+1.5450\left(1-\frac{450}{500}\right)=517.5
$$

(b) Is the equilibrium point $N=500$ stable?

Solution: If $0<r<2$, then the carrying capacity is stable. In our case $r=1.5$, so it is stable.
(c) Find the other zero of the equation.

Solution: The is set

$$
N_{t}+1.5 N_{t}\left(1-\frac{N_{t}}{500}\right)=0
$$

and solve. This factors as

$$
N_{t}\left(1+1.5\left(1-\frac{N_{t}}{500}\right)\right)=0
$$

so one zero is $N_{t}=0$ and the other is when

$$
1+1.5\left(1-\frac{N_{t}}{500}\right)=0
$$

Distributing the 1.5

$$
1+1.5-\frac{1.5 N_{t}}{500}=0
$$

So

$$
-\frac{1.5 N_{t}}{500}=-2.5
$$

leading to

$$
N_{t}=\frac{(2.5)(500)}{1.5}=833.3333333 \ldots
$$

