Homework assigned Friday, October 8

We wish to be able to find the stable age distribution for a Leslie matrix, A, more directly than just computing $A^{t} \vec{n}(0)$ for large values of t and seeing when it stabilizes. (If you are not interested in the theory, you can skip down to Summary.) Let us start with a 3×3 matrix

$$
A=\left[\begin{array}{ccc}
F_{1} & F_{2} & F_{3} \\
P_{1} & 0 & 0 \\
0 & P_{2} & 0
\end{array}\right]
$$

Now Leslie noticed that if

$$
\vec{n}=\left[\begin{array}{c}
1 \\
\frac{P_{1}}{\lambda} \\
\frac{P_{1} P_{2}}{\lambda^{2}}
\end{array}\right]
$$

(where λ is a number to be determined later) then

$$
A \vec{n}=\left[\begin{array}{c}
F_{1}+\frac{F_{2} P_{1}}{\lambda}+\frac{F_{3} P_{1} P_{2}}{\lambda^{2}} \tag{1}\\
P_{1} \\
\frac{P_{1} P_{2}}{\lambda}
\end{array}\right]
$$

Then if we choose λ so that

$$
\frac{F_{1}}{\lambda}+\frac{F_{2} P_{1}}{\lambda^{2}}+\frac{F_{3} P_{1} P_{2}}{\lambda^{3}}=1,
$$

which (multiply by λ) implies

$$
\begin{gathered}
F_{1}+\frac{F_{2} P_{1}}{\lambda}+\frac{F_{3} P_{1} P_{2}}{\lambda^{2}}=\lambda \\
A \vec{n}=\left[\begin{array}{c}
\lambda \\
P_{1} \\
\frac{P_{1} P_{2}}{\lambda}
\end{array}\right]=\lambda\left[\begin{array}{c}
1 \\
\frac{P_{1}}{\lambda} \\
\frac{P_{1} P_{2}}{\lambda^{2}}
\end{array}\right]=\lambda \vec{n}
\end{gathered}
$$

From this it is not hard to see that if \vec{n} gives the stable age distribution.
Summary: If λ is a the positive solution to

$$
\begin{equation*}
\frac{F_{1}}{\lambda}+\frac{F_{2} P_{1}}{\lambda^{2}}+\frac{F_{3} P_{1} P_{2}}{\lambda^{3}}=1 \tag{2}
\end{equation*}
$$

(this is the Lotka-Euler equation) then the stable age distribution is given by

$$
\vec{n}=\left[\begin{array}{c}
1 \tag{3}\\
\frac{P_{1}}{\lambda} \\
\frac{P_{1} P_{2}}{\lambda^{2}}
\end{array}\right]
$$

Example. Let

$$
A=\left[\begin{array}{ccc}
0 & 2 & 10 \\
.1 & 0 & 0 \\
0 & .9 & 0
\end{array}\right]
$$

so that

$$
F_{1}=0, \quad F_{2}=2, \quad F_{3}=10, \quad P_{1}=.1, \quad P_{2}=.9
$$

Thus the Lotka-Euler equation is

$$
\frac{F_{1}}{\lambda}+\frac{F_{2} P_{1}}{\lambda^{2}}+\frac{F_{3} P_{1} P_{2}}{\lambda^{3}}=\frac{(2)(.1)}{\lambda^{2}}+\frac{(10)(.1)(.9)}{\lambda^{3}}=\frac{0.2}{\lambda^{2}}+\frac{0.9}{\lambda^{3}}=1
$$

Solve this using your calculator to get

$$
\lambda=1.034429638
$$

Then the vector for the stable age distribution is

$$
\vec{n}=\left[\begin{array}{c}
1 \\
\frac{P_{1}}{\lambda} \\
\frac{P_{1} P_{2}}{\lambda^{2}}
\end{array}\right]=\left[\begin{array}{c}
1 \\
\frac{.1}{1.034429638} \\
\frac{(.1)(.9)}{(1.034429638)^{2}}
\end{array}\right]=\left[\begin{array}{c}
1 \\
0.09667163075 \\
0.08410863772
\end{array}\right]
$$

So
Percent in Stage $1=100 \frac{1}{1+0.09667163075+0.08410863772} \%=84.69 \%$
Percent in Stage $1=100 \frac{1}{1+0.09667163075+0.08410863772} \%=8.19 \%$
Percent in Stage $1=100 \frac{1}{1+0.09667163075+0.08410863772} \%=7.12 \%$
bf Problem 1. Use this method to find the stable age distribution for the Leslie matrix

$$
A=\left[\begin{array}{lll}
0 & 2 & 6 \\
.4 & 0 & 0 \\
0 & .1 & 0
\end{array}\right]
$$

Problem 2. Use this method to find the stable age distribution for the Leslie matrix

$$
A=\left[\begin{array}{ccc}
0 & 25 & 400 \\
.01 & 0 & 0 \\
0 & .2 & 0
\end{array}\right]
$$

